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Abstract: This paper aims to lay down the foundations of
an approach to autonomous mobile robot (AMR)
navigation based on the explicit representation of mental
entities (desire, intention, obligation, etc.) underlying robot
behavior, considered as autonomous active entities. The
approach is intended to integrate concepts from the area of
distributed architectures and of mental entity
representation and it is claimed to allow the achievement of
both robust and sophisticated robot behavior. Starting
from an analysis of the evolution of AMR control
architectures, the introduction of mental entities in the
context of distributed control architectures is motivated as
a further step in the direction of making explicit the deep
reasons that underlie the behavior of intelligent systems. A
simple application example concerning an autonomous mail
delivery robot is finally provided: the example
demonstrates the main features and the potential of the
proposed approach in facing unusual and complex tasks.

1  INTRODUCTION

In the design of control architectures for autonomous
mobile robots (AMRs) there has been a progressive
evolution from hierarchical paradigms, based on the
sense-plan-act loop [14][16][5], to behavior-based
architectures featuring the explicit representation of
behaviors [3][1][6][9] and distributed control
architectures [2][7], where robot control is
distributed among autonomous interacting agents.
Moreover, other researchers [4][12][13] have
suggested to endow robots with so-called “mental
states”, in order to improve their ability to operate
autonomously in unknown environments.
This paper aims at laying down the foundations of an
approach to AMR control based on the explicit
representation of mental entities (desire, intention,
obligation, etc.) underlying the robot behavior,
considered as autonomous agents. The approach is
grounded on two assumptions:

• the adoption of a distributed paradigm for the
control of AMRs is crucial for obtaining effective
behavior in complex situations;

• the explicit representation of mental entities as
autonomous agents is crucial for supporting
advanced AMR performance.

The proposed approach is based on the concept of
active mental entity and can account for the
mechanisms by which external AMR behavior can
be generated as a result of internal mental processes.

2  AMR CONTROL PARADIGMS

2.1 Evolution and state-of-the-art
Several researchers are involved in studying how to
make a robot an intelligent autonomous agent.
For example, Pfeifer [11] and Steels [15] analyze
cognition mechanisms to understand how to design
robots that can operate in a variety of unforeseeable
environmental situations and are capable of
autonomously updating their world models. A useful
way to analyze AMR control paradigms is to study
how their behavior is obtained. Two main stages of
development may be identified.

Coded behavior
This paradigm, often called hierarchical paradigm,
is based on the principle of explicitly coding how the
robot should behave in any specific situation. Robot
control is achieved through a sense-plan-act loop: a
suitable sensory system identifies the current
situation and then a hierarchical plan determines the
actions to perform.
Coded behavior does not provide indeed any
explicit representation of robot behavior, but only



focuses on actions, fully determined, through a
hierarchical plan, by the sensory data.
This approach is presently considered obsolete and
has been generally replaced by the more advanced
explicit behavior paradigms.

Explicit behavior
This paradigm, often called behavior-based
paradigm, is based on the assumption that robots
are intelligent problem solvers and their problem-
solving capabilities are determined by their behavior.
Behavior is understood as a complex process,
governed by a suitable control regime. Clearly, the
control regime adopted for managing robot behavior
greatly influences its performance. Considering
proposals, based on this paradigm, developed and
experimented in recent years, we distinguish control
regimes into two main categories: rigid control and
flexible control. These are illustrated below.

Explicit behavior with rigid control
The first proposal based on the explicit behavior
paradigm is the subsumption architecture
developed by Brooks [3], who advocates a
problem decomposition strategy based on task-
achieving behaviors, which replaces the old way of
decomposing the control system of a robot into
sensing, planning and acting, adopted by coded
behavior approaches. To this end, a set of
competence levels are defined; each level provides
an informal specification of a class of behaviors such
as "avoid contact with objects", "wander aimlessly
around without hitting things", "explore the world",
etc. Layers of the robot control system are then built
in correspondence to competence levels. Each layer
is implemented by simple modules which exchange
messages and operate in parallel. In this way, the
AMR architecture can be developed incrementally,
starting from lower-level layers and proceeding step
by step towards higher-level ones. Unfortunately,
this tends to result in a hierarchical organization, with
a great amount of interdependence between
behaviors, lacking modularity and flexibility.
Moreover the need of implementing high level
operation strategies can hardly be achieved from the
simple combination of purely reactive behaviors.
To overcome this problem, a control mechanism is
needed; thus, more recent proposals develop

behavior-based architectures with centralized
control.
Balch et al. describe a trash-collecting team of
robots, that can implement several reactive
behaviors, each one devoted to accomplish a
particular step of the office cleanup task [1]. A
centralized structure determines the correct
sequence of behaviors needed to solve a specific
cleanup problem (sequenced coordination).
Also Konolige proposes a behavior-based
architecture for his robot Erratic [6]. Here, the
behaviors are composed by means of fuzzy rules
and are coordinated by a decision system based on
an intention schema. At any moment, several
schemata (10 to 15) are able to operate in parallel,
monitoring conditions and coordinating behaviors.
The system can react in real time to environment
changes.
Finally, Montgomery et al. [9] built a flying robot
which uses a behavior-based control architecture
and which is capable of locating and manipulating
objects and transporting them from one location to
another. Behaviors are organized hierarchically: at
the highest level of control, a sequencer determines
the behaviors to activate and the parameters to
instantiate to achieve a desired subgoal. The authors
underline the difficulty of increasing the complexity of
a behavior-based system due to the possible
coupling of behaviors. To overcome this limitation
they propose, as a future work, the integration of a
fuzzy-rule system with the behavior-based
controller.

Even if centralized control is intended to improve
purely behavior-based architectures, it may,
however, become a bottleneck in complex
problems. It is quite rigid and generally does not
allow dealing with multiple goals simultaneously.
Moreover, organizations with centralized control do
not support incremental system development and
makes maintenance and extension hard and costly.

Explicit behavior with flexible control
Distributed robot control architectures aim at
overcoming the limitations discussed above. The
issue of distributed control has been explored by
Liscano et al. [7], who propose a mobile robot with
a blackboard architecture for coordinating and



integrating several real-time activities. According to
the classical blackboard concept [10], this
architecture includes a collection of highly
independent modules, called knowledge sources,
with their own inference mechanisms and a local
knowledge base to perform specific tasks.
Blackboard structure does not support, however,
reactive behavior capabilities. Thus, the work of
Liscano et al. presents a modification of the
approach to manage real-time issues by avoiding
that all communications are forced to go through the
blackboard.
In [2], Baroni et al. propose a more advanced
distributed architecture, called specialist net, that
includes many specialists, each able to carry out a
specific activity.
Specialists cooperate according to a task-sharing
approach. In this approach, when an agent is faced
with a task too large or too complex for its
capabilities, it may request assistance to other agents
available in the architecture. It first decomposes the
task at hand into more manageable sub-tasks and
then it attempts to find other specialists with the
appropriate competence to handle them. Specialists
include a set of dedicated modules, in charge of
decomposing complex problems, allocating the sub-
problems resulting from decomposition, solving
problems falling within their competence domain,
and communicating with other agents.

2.2 Limitations and open issues
All the approaches to the problem of controlling
AMRs presented in the previous section can not
support sophisticated behaviors in front of unusual
and complex situations. Modules (or behaviors)
which compose the described robot control systems
have limited capabilities and allow only simple tasks
to be carried out.
Referring to Brooks' robots, Pfeifer [11] says that "if
they are to perform more intelligent tasks they will
need to be equipped by cognition", where cognition
means the ability of dealing with desires, inhibitions,
intentions, etc. In more general terms, it seems
reasonable to envisage a new AMR control
paradigm that, pushing further the evolution surveyed
in the previous section, goes beyond explicit
behavior. Behavior can be understood as the
external visible result of a hidden cognitive activity
occurring inside the robot control system. Behavior

does not need to be explicitly defined and managed,
as in the explicit behavior paradigm, but it is
determined, in an indirect way, by the cognitive
activity.
We call the new paradigm proposed above indirect
behavior, and we claim that it can support more
sophisticated and effective solutions of the AMR
control problem than explicit behavior.

3 ENDOWING ROBOTS WITH ACTIVE
MENTAL ENTITIES

3.1 The intuitive concept of mental entity
Human behavior is often explained by using terms
such as desire, inhibition, intention, hope, obligation,
prohibition, etc. These terms denote mental
entities, i.e. entities that are inside the mind of a
person and which are responsible of his/her external
behavior.
The complex processes that occur in human mind
involving mental entities are called mental
processes.
The totality of our actions is guided, consciously or
not, by our mental processes.
Behavior and mental activity are complex
interconnected processes. In a simple framework,
behavior can be understood as the combined result
of mental activity and perception of the world. No
behavior can be explained without taking into
account (at least) these two components.

3.2 Why modeling mental entities for AMR
control ?
In order to explore the motivations underlying the
use of mental entity models for AMR control, let us
examine some different descriptions of the operation
of a trash collecting robot. From an external point of
view, robot operation can be described in very
simple terms such as: the robot is able to move
around, recognize trash, approach it, and collect it.
The overall robot operation can then be described,
according to the coded behavior paradigm, as a
move-recognize-approach-collect loop. In this
description only the desired operation of the robot is
considered and can be coded in algorithmic terms.
However, this solution is weak and fragile when
confronted with real-world situations. For example,
the goal to avoid moving obstacles can hardly be
dealt with in such a simple approach. In fact, this



goal may arise asynchronously and has to be
achieved in real-time, without waiting for the
completion of the current step of the AMR control
algorithm. Moreover, it can not be treated simply as
an interrupt, since after the obstacle has been
avoided the state of the robot and of the world has
changed and the previous process can not be simply
resumed.
Behavioral approaches have been designed to
overcome this kind of limitations. According to the
explicit behavior paradigm, robot capabilities are
modeled as independent behaviors, such as "in
presence of trash, collect it" or "in presence of an
obstacle, avoid it". This approach to behavior
modeling corresponds in some way to a modular
rule-based representation. In fact, each behavior
corresponds to a separate part of the problem, just
like a single rule corresponds to an isolated chunk of
domain knowledge cased in a condition-action
frame. There is no explicit representation of the
reasons why obstacles should be avoided, as well as
there is no justification for the relation between the
IF-part and the THEN-part of a rule. The desired
robot operation arises in this case from a not
predetermined combination of single behaviors, just
like useful reasoning results from a not
predetermined combination of rules. Attention is
therefore paid to specify behaviors, whereas global
operation results as a side-effect of correct behavior
specification.
In behavior-based systems with rigid control the
connections between sensory data and behaviors
and between different behaviors are strictly
programmed and there is a hierarchy of control
levels where higher-level behaviors subsume the
lower-level ones. Therefore, no dynamic interaction
between behaviors is allowed and the overall
behavior organization turns out to be complex, rigid,
and difficult to design, test, extend and modify.
To overcome these difficulties, dynamic interactions
between autonomous agents, each one playing a
specific role in the overall system organization, are
explicitly represented in behavior-based systems
with flexible distributed control.
For instance, the agent in charge of obstacle
avoidance may cooperate with the agent in charge of
approaching trash in order to produce a motion
strategy which satisfies both needs.

Distributed control approaches are based on the
fundamental assumption that the global behavior of
the robot is the result of the interaction between
elementary agents, each one in charge of a specific
activity. No attention is paid, however, to the
reasons underlying agents' activity and to the
motivations which push agents to interact. In a
sense, agents are understood as behavioral black
boxes; they can provide specified behaviors but the
internal mechanisms that determine such behaviors
are not modeled.
This implies that agent behavior is constrained to
remain the same in all situations and does not take
into account conditions that may affect the reasons
that makes such behavior appropriate (or not).
Consider, for example, obstacle avoidance. Such
behavior is generally appropriate, since the robot
may damage itself through a collision with an
obstacle or since an obstacle may obstruct the
shortest path towards a target. However, in the case
an obstacle can not damage the robot and can be
pushed (for example, it is an unlocked door or an
empty cardboard box obstructing a corridor) the
robot might prefer to hit the obstacle, rather than
searching (possibly in vain) a way to avoid it. In
order to choose between these alternatives, the
robot should have an explicit representation of the
motivations that lie behind its behavior. It should be
able to reason about the intentions from which its
behavior derives, in order to tailor the behavior to
meet such intentions in the most appropriate way,
compatibly with the current situation. This approach
implies a significant focus shift with respect to the
behavior-based paradigm; behaviors are no more
considered as the primitive entities from which the
overall robot operation derives, but are themselves
produced by the mental activity occurring inside the
robot control architecture. This corresponds to a
deeper modeling activity, which aims to bring to light
the mental roots of behavior, according to the
assumption that, like better operation can be
achieved by modeling the behaviors underlying it,
better behaviors can be achieved by modeling the
mental activity on which behaviors are based. This
way, it is possible to improve robot intelligence in
facing new and critical situations.



Modeling mental activity encompasses modeling
mental entities and mental entity interactions. Mental
entities are not considered as passive entities (mere
information structures, mere static objects, operating
according to stated and fixed procedural rules) but
as active entities, i.e. entities endowed with
autonomy. In fact, since mental entities have to
dynamically interact to produce a globally intelligent
behavior, it is essential that they are provided with
individual and independent operation capabilities.
Therefore, we call them active mental entities,
stressing that they are autonomous and can operate
and cooperate according to their own goals and
strategies. So, recalling that "intelligence emerges
from the interaction of the components of the
systems" [8], in our proposal, system intelligence
emerges from interaction of active mental entities.

4. AN EXAMPLE

In this section we present a simple example that
shows, in intuitive terms, how the proposed ideas
could be implemented in an actual robot, allowing it
to deal successfully with complex problems and
unusual situations. It is assumed that the robot
control is managed by a distributed architecture
composed by autonomous agents, each capable to
carry out specific activities. Each agent is endowed
with active mental entities: the interactions of active
mental entities determine agent's (and consequently
robot's) behavior. For the sake of clarity and
simplicity we consider here only two types of active
mental entities, namely intentions and persuasions.
We say that an agent has an intention when it
commits itself to pursue an achievement. Intentions
are modeled as active mental entities, since we
assume that an intention is an autonomous entity
definitely committed to reach its achievement,
possibly cooperating or conflicting with other
intentions.
We say that an agent has a persuasion when it has
some belief about the truth value of a given
proposition. Persuasions are modeled as
autonomous active entities since we assume that a
persuasion is not just the passive result of some
perceptual or reasoning activity, but it is definitely
committed to reinforce itself, i.e. to find new
elements to believe or disbelieve in the related
proposition and to verify the already available ones.

In such activity a persuasion may cooperate or
conflict with other persuasions.
The example concerns a department mail delivery
robot, to which the user consigns an envelope to be
delivered to Mr. X. Interaction with the user is
managed by a specialised agent UI (User
Interaction), which is characterized by a primitive
intention whose subject is "obey-the-user".
According to this intention, a new intention has to be
generated whose subject is "deliver-mail-to Mr. X".
However, since UI has no specific competence on
mail delivering, it has to address the request of
creating this new intention to another competent
agent. By resorting to its interface, UI identifies the
MD (Mail Delivery) agent to which the request is
addressed: the new intention whose subject is
"deliver-mail-to Mr. X" is therefore created within
MD. MD has both general knowledge about the
mail delivery task and specific knowledge about the
department personnel, as far as mail delivery is
concerned. So MD knows that Mr. X is actually a
department employee, that his office is office number
9, and that normally, his office hours are from 9.00
a.m. to 5.00 p.m.. Since current time is 3.00 p.m.
(this information is provided on request by a
specialised CLOCK agent), MD generates the
persuasion that Mr. X is now present in the
department.
This persuasion supports the persuasion that the
intention "deliver-mail-to Mr. X" can be actually
achieved. On these grounds, the intention "deliver-
mail-to Mr. X" can then elaborate a strategy to
deliver mail to Mr. X. To this purpose, however,
some more detailed persuasion about where Mr. X
is has to be instantiated. In absence of more specific
information, using default knowledge that normally
an employee is in his office, the following persuasion
is generated: "Mr. X present-in-office". On the basis
of this persuasion, the following simple strategy is
eventually generated:

task 1: go to office 9;
task 2: deliver the envelope to Mr. X.

Task 1 is considered first: it still concerns a quite
generic and high-level task and must therefore be
associated to a new intention. A request of
generating such intention is therefore addressed by
MD to the MM (Movement Management) agent.



MM, generates the intention "go-to-office 9" and,
exploiting his knowledge about building topology, it
generates then a strategy to reach office 9 and
begins to realize it.
It has to be stressed that, meanwhile, all the
mentioned mental components do not remain simply
waiting for the accomplishment of the selected
strategy. On the contrary, they remain active:
intentions are continuously looking for better
strategies and persuasions are continuously looking
for new evidences supporting them. Moreover, it
can be assumed that some agents in charge of
sensory acquisition are always active, because their
output is necessary to other agents in charge of very
essential primitive intentions, such as preserving
robot integrity. Sensory data can therefore be used
by intentions and persuasions for the activity
mentioned before.
While the robot moves towards office 9, the
intention "deliver-mail-to Mr. X" may elaborate the
following alternative strategy:

task 1: find Mr. X around in the department
task 2: go near Mr. X
task 3: deliver the envelope to Mr. X.

This strategy relies on the persuasion that Mr. X is
not in his office but somewhere else in the
department: "Mr. X present-but-not-in-office".
However, before the strategy becomes operative,
the persuasion has to find some support. To this
purpose, "Mr. X present-but-not-in-office" may
generate intentions like "recognize-voice-of Mr. X"
and "recognize-face-of Mr. X" to be addressed to
agents specialized in processing audio and video
input coming from sensory devices.
If sufficient resources are available, these activities
can be carried out in parallel while the robot moves
toward office 9, according to the first generated
strategy.
Let us suppose now that, while moving, the robot
gets near a glass wall behind which there is Mr. X.
Then the vision system recognizes Mr. X in front of
the robot and, therefore, persuasion "Mr. X present-
but-not-in-office" gets strong support, whereas "Mr.
X present-in-office" is dismissed, since direct
evidences prevail always over default knowledge.
As a consequence, also the first strategy generated
on the ground of "Mr. X present-in-office" and the

relevant intentions are abandoned (note however
that they will revive if, for instance, it will be realized
that Mr. X recognition was erroneous).
The second proposed strategy becomes then active
and, since task 1 has been achieved (find Mr. X
around in the department), task 2 is pursued (go
near Mr. X).
A request to create the intention "go-near-Mr. X" is
therefore addressed to the agent MM (which, in the
meanwhile, has dismissed all the activities implied by
the first strategy). Suppose now that Mr. X is
standing just in front of the robot. The goal of
navigating towards such a fixed target is reduced to
the goal go-forward. While the robot is moving
forward, the VC (Video Camera) and SRS (Sonar
Range Sensors) agents acquire and process data
about the external world. Doing this, they
continuously generate or update persuasions about
the environment, whose subject is communicated to
the agent CA (Collision Avoidance).
Suppose now that, while the robot is approaching
the target, VC and SRS communicate to CA two
contradicting persuasions: SRS has the persuasion
that "there-is-an-obstacle-on-the-path", whilst VC
has the persuasion "no-obstacle-on-the-path". CA
recognizes that it is impossible to take a decision,
given these contradicting persuasions, and therefore
decides that the conflict should be solved. It puts the
two persuasions face to face by notifying each of
them of the existence of the opponent persuasion.
The persuasions "there-is-an-obstacle-on-the-path"
and "no-obstacle-on-the-path" enter therefore a
debate in order to solve the conflict. First of all, an
analysis of the motivations supporting them is carried
out: "there-is-an-obstacle-on-the-path" is supported
by the fact that sonar received reflected echoes,
"no-obstacle-on-the-path" is supported by the fact
that in the image collected by video camera nothing
but Mr. X is seen.
The persuasions "there-is-an-obstacle-on-the-path"
and "no-obstacle-on-the-path" are then in charge of
searching evidence or other persuasions
corroborating their supports or undermining the
opponent's ones. For instance, "no-obstacle-on-the-
path" can resort to general knowledge (this
knowledge may be provided by the SRS agent
itself) that sonar readings are often erroneous and
notify it to "there-is-an-obstacle-on-the-path". In



turn "there-is-an-obstacle-on-the-path" may reply
that sonar readings are erroneous in specific
conditions (near wall corners, in presence of noise
sources, etc.) that are not met in the present case.
Moreover "there-is-an-obstacle-on-the-path" may
attack directly "no-obstacle-on-the-path" by
resorting to general knowledge provided by BT
(Building Topology) agent, that, in the building, there
are invisible obstacles (such as transparent glass
walls).
Since "no-obstacle-on-the-path" is not able to reply
to these arguments, "there-is-an-obstacle-on-the-
path" prevails: the presence of an obstacle is
accepted and CA intervenes to modify the motion
plan, going around the glass wall and eventually
reaching Mr. X.

5. CONCLUSION

The application of the proposed approach to AMR
navigation has been described in order to show its
potential in practical contexts.
Due to space limitations and for the sake of clarity,
only the basic ideas of our approach and an intuitive
and informal description of its application have been
given. However, a (preliminary) complete formal
description of all the presented concepts has been
developed by the authors and a software
implementation in C++ on a Sun workstation is in
progress.
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