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Abstract: This paper aims to lay down the foundations of
an approach to autonomous mobile robot (AMR)
navigation based on the explicit representation of mental
entities (desire, intention, obligation, etc.) underlying robot
behavior, considered as autonomous active entities. The
approach isintended to integrate concepts from the area of
distributed architectures and of mental entity
representation and it is claimed to allow the achievement of
both robust and sophisticated robot behavior. Starting
from an analysis of the evolution of AMR control
architectures, the introduction of mental entities in the
context of distributed control architectures is motivated as
a further step in the direction of making explicit the deep
reasons that underlie the behavior of intelligent systems. A
simple application example concerning an autonomous mail
delivery robot is finaly provided: the example
demonstrates the main features and the potential of the
proposed approach in facing unusual and complex tasks.

1 INTRODUCTION

In the design of control architectures for autonomous
mobile robots (AMRS) there has been a progressive
evolution from hierarchical paradigms, based on the
sense-plan-act loop [14][16][5], to behavior-based
architectures featuring the explicit representation of
behaviors [3][1][6][9] and distributed control
architectures [2][7], where robot control is
digtributed among autonomous interacting agents.
Moreover, other researchers [4][12][13] have
suggested to endow robots with so-cdled “menta
dates’, in order to improve their ability to operate
autonomoudy in unknown environments.

This pgper ams & laying down the foundations of an
approach to AMR control based on the explicit
representation of menta entities (desire, intention,
obligation, etc.) underlying the robot behavior,
considered as autonomous agents. The approach is
grounded on two assumptions:

» the adoption of a digtributed paradigm for the
control of AMRsis crucid for obtaining effective
behavior in complex Stuations,

» the explicit representation of mental entities as
autonomous agents is crucid for supporting
advanced AMR performance.

The proposed approach is based on the concept of
active menta entity and can account for the
mechanisms by which externd AMR behavior can
be generated as aresult of internal mental processes.

2 AMR CONTROL PARADIGMS

2.1 Evolution and state-of-the-art

Severa researchers are involved in studying how to
make a robot an intelligent autonomous agent.
For example, Pfeifer [11] and Steds [15] andyze
cognition mechanisms to understand how to design
robots that can operate in a variety of unforeseeable
environmental  dtuations and ae capable of
autonomoudy updating their world models. A useful
way to andyze AMR control paradigms is to study
how their behavior is obtained. Two main stages of
development may be identified.

Coded behavior

This paradigm, often called hierarchical paradigm,
is based on the principle of explicitly coding how the
robot should behave in any specific Stuation. Robot
control is achieved through a sense-plan-act loop: a
duiteble sensory  system  identifies  the current
Stuation and then a hierarchicd plan determines the
actionsto perform.

Coded behavior does not provide indeed any
explicit representation of robot behavior, but only



focuses on actions, fully determined, through a
hierarchica plan, by the sensory data.

This gpproach is presently considered obsolete and
has been generdly replaced by the more advanced
explicit behavior paradigms.

Explicit behavior

This paradigm, often cdled behavior-based
paradigm, is based on the assumption that robots
are intdligent problem solvers and their problem-
solving capabilities are determined by their behavior.
Behavior is understood as a complex process,
governed by a suitable control regime. Clearly, the
control regime adopted for managing robot behavior
greetly influences its peformance. Consdering
proposas, based on this paradigm, developed and
experimented in recent years, we digtinguish control
regimes into two main categories. rigid control and
flexible control. These areillustrated below.

Explidt behavior withrigid control

The first proposd based on the explicit behavior
paadigm is the subsumption architecture
developed by Brooks [3], who advocates a
problem decomposition drategy based on task-
achieving behaviors, which replaces the old way of
decomposing the control system of a robot into
sensgng, planning and acting, adopted by coded
behavior approaches. To this end, a st of
competence leves are defined; each leve provides
an informa specification of aclass of behaviors such
as "avoid contact with objects’, "wander amlessy
around without hitting things', "explore the world",
etc. Layers of the robot control system are then built
in correspondence to competence levels. Each layer
is implemented by smple modules which exchange
messages and operate in pardld. In this way, the
AMR architecture can be developed incrementdly,
garting from lower-level layers and proceeding step
by step towards higher-levd ones. Unfortunatdly,
this tends to result in a hierarchical organization, with
a great amount of interdependence between
behaviors, lacking modularity and flexibility.
Moreover the need of implementing high levd
operation srategies can hardly be achieved from the
smple combination of purely reactive behaviors.

To overcome this problem, a control mechaniam is
needed; thus, more recent proposals develop

behavior-based  architectures with  centrdized
control.

Bdch e d. describe a trash-collecting team of
robots, that can implement severd reactive
behaviors, each one devoted to accomplish a
paticular step of the office cleanup task [1]. A
centralized dructure determines the  correct
sequence of behaviors needed to solve a specific
cleanup problem (sequenced coordination).

Also Konolige proposes a behavior-based
architecture for his robot Erratic [6]. Here, the
behaviors are composed by means of fuzzy rules
and are coordinated by a decision system based on
an intention schema At any moment, severd
schemata (10 to 15) are able to operate in parald,
monitoring conditions and coordinating behaviors.
The system can react in red time to environment
changes.

Findly, Montgomery et d. [9] built a flying robot
which uses a behavior-based control architecture
and which is capable of locating and manipulating
objects and transporting them from one location to
another. Behaviors are organized hierarchicdly: a
the highest level of control, a sequencer determines
the behaviors to activate and the parameters to
ingtantiate to achieve a desred subgod. The authors
underline the difficulty of increasing the complexity of
a behavior-based system due to the possble
coupling of behaviors. To overcome this limitation
they propose, as a future work, the integration of a
fuzzy-rue sysem with the behavior-based
controller.

Even if centrdized contral is intended to improve
purely behavior-based architectures, it may,
however, become a bottleneck in complex
problems. It is quite rigid and generdly does not
dlow deding with multiple gods smultaneoudy.
Moreover, organizations with centraized control do
not support incrementd system development and
makes maintenance and extension hard and codtly.

Explidt behavior with flexible control

Didributed robot control architectures am at
overcoming the limitations discussed above. The
issue of digtributed control has been explored by
Liscano et d. [7], who propose a mobile robot with
a blackboard architecture for coordinating and




integrating severd red-time activities. According to
the classcd blackboard concept [10], this
architecture incdludes a collection of highly
independent modules, cdled knowledge sources,
with their own inference mechanisms and a loca
knowledge base to peform gpecific tasks.
Blackboard structure does not support, however,
reactive behavior cgpabilities. Thus, the work of
Liscano et d. presents a modification of the
gpproach to manage red-time issues by avoiding
that al communications are forced to go through the
blackboard.

In [2], Baroni et a. propose a more advanced
digtributed architecture, cdled specialist net, that
includes many specididts, each able to carry out a
specific activity.

Specidists cooperate according to a task-sharing
gpproach. In this approach, when an agent is faced
with a task too large or too complex for its
capabilities, it may request assistance to other agents
available in the architecture. It first decomposes the
task a hand into more manageable sub-tasks and
then it attempts to find other specidigts with the
gppropriate competence to handle them. Specididts
include a set of dedicated modules, in charge of
decomposing complex problems, dlocating the sub-
problems resulting from decompogtion, solving
problems fdling within their competence domain,
and communicating with other agents.

2.2 Limitations and open issues

All the approaches to the problem of controlling
AMRs presented in the previous section can not
support sophisticated behaviors in front of unusud
and complex dtuations. Modules (or behaviors)
which compose the described robot control systems
have limited capabilities and dlow only smple tasks
to be carried out.

Referring to Brooks robots, Pfeifer [11] says that "if
they are to perform more inteligent tasks they will
need to be equipped by cognition”, where cognition
means the ability of deding with desres, inhibitions,
intentions, etc. In more generd terms, it seems
reasonable to envissge a new AMR control
paradigm that, pushing further the evolution surveyed
in the previous section, goes beyond explicit
behavior. Behavior can be understood as the
externd visble result of a hidden cognitive activity
occurring indde the robot control system. Behavior

does not need to be explicitly defined and managed,
as in the explicit behavior paradigm, but it is
determined, in an indirect way, by the cognitive
activity.

We cdl the new paradigm proposed above indirect
behavior, and we clam that it can support more
sophigticated and effective solutions of the AMR
control problem than explicit behavior.

3 ENDOWING ROBOTSWITH ACTIVE
MENTAL ENTITIES

3.1 Theintuitive concept of mental entity
Human behavior is often explaned by usng terms
such as dedire, inhibition, intention, hope, obligation,
prohibition, etc. These terms denote mental
entities, i.e. entities that are ingde the mind of a
person and which are respongble of higher externa
behavior.

The complex processes that occur in human mind
involving mentd entities ae cdled mental
Processes.

The totality of our actions is guided, conscioudy or
not, by our mental processes.

Behavior and mentd activity ae complex
interconnected processes. In a smple framework,
behavior can be understood as the combined result
of mentd activity and perception of the world. No
behavior can be explaned without teking into
account (at least) these two components.

3.2 Why modeling mental entitiesfor AMR
control ?

In order to explore the motivations underlying the
use of mentd entity modds for AMR contral, let us
examine some different descriptions of the operation
of atrash collecting robot. From an externa point of
view, robot operation can be described in very
smple terms such as the robot is adle to move
around, recognize trash, approach it, and collect it.
The overdl robot operation can then be described,
according to the coded behavior paradigm, as a
move-recognize-gpproach-collect loop. In this
description only the desired operation of the robot is
consdered and can be coded in agorithmic terms.
However, this solution is week and fragile when
confronted with red-world Stuations. For example,
the god to avoid moving obstacles can hardly be
dedt with in such a ample gpproach. In fact, this



god may aise asynchronoudy and has to be
achieved in red-time, without wating for the
completion of the current step of the AMR control
agorithm. Moreover, it can not be treated Smply as
an interrupt, snce after the obgtacle has been
avoided the state of the robot and of the world has
changed and the previous process can not be smply
resumed.

Behavioral approaches have been designed to
overcome this kind of limitations. According to the
explicit behavior paradigm, robot capabilities are
modded as independent behaviors, such as "in
presence of trash, collect it" or "in presence of an
obstacle, avoid it". This gpproach to behavior
modeling corresponds in some way to a modular
rule-based representation. In fact, each behavior
corresponds to a separate part of the problem, just
like a single rule corresponds to an isolated chunk of
domain knowledge cased in a condition-action
frame. There is no explicit representation of the
reasons why obstacles should be avoided, aswell as
there is no judtification for the relaion between the
IF-part and the THEN-part of a rule. The desired
robot operation arises in this case from a not
predetermined combination of sngle behaviors, just
like useful reasoning results from a not
predetermined combination of rules. Attention is
therefore paid to specify behaviors, whereas global
operation results as a Sde-effect of correct behavior
Specification.

In behavior-based systems with rigid control the
connections between sensory data and behaviors
and between different behaviors are drictly
programmed and there is a hierarchy of control
levels where higher-level behaviors subsume the
lower-level ones. Therefore, no dynamic interaction
between behaviors is dlowed and the overdl
behavior organization turns out to be complex, rigid,
and difficult to design, test, extend and modify.

To overcome these difficulties, dynamic interactions
between autonomous agents, each one playing a
specific role in the overdl system organization, are
explicitly represented in behavior-based systems
with flexible digtributed control.

For ingance, the agent in charge of obdacle
avoidance may cooperate with the agent in charge of
gpproaching trash in order to produce a motion
srategy which satisfies both needs.

Digtributed control approaches are based on the
fundamentd assumption that the globd behavior of
the robot is the result of the interaction between
elementary agents, each one in charge of a specific
activity. No dtention is pad, however, to the
reesons underlying agents activity and to the
moativations which push agents to interact. In a
sense, agents are understood as behavioral black
boxes, they can provide specified behaviors but the
internd mechanisms that determine such behaviors
are not modeled.

This implies that agent behavior is condrained to
remain the same in al Stuations and does not teke
into account conditions that may affect the reasons
that makes such behavior appropriate (or not).
Condgder, for example, obstacle avoidance. Such
behavior is generdly appropriate, since the robot
may damaege itsdf through a collison with an
obstacle or since an obstacle may obstruct the
shortest path towards a target. However, in the case
an obgtacle can not damage the robot and can be
pushed (for example, it is an unlocked door or an
empty cardboard box obstructing a corridor) the
robot might prefer to hit the obstacle, rather than
searching (possbly in vain) a way to avoid it. In
order to choose between these dternatives, the
robot should have an explicit representation of the
moativations that lie behind its behavior. It should be
able to reason about the intentions from which its
behavior derives, in order to tailor the behavior to
meet such intentions in the most appropriate way,
compatibly with the current Stuation. This gpproach
implies a sgnificant focus shift with respect to the
behavior-based paradigm; behaviors are ho more
conddered as the primitive entities from which the
overdl robot operation derives, but are themselves
produced by the menta activity occurring ingde the
robot control architecture. This corresponds to a
deeper modding activity, which amsto bring to light
the mental roots of behavior, according to the
assumption that, like better operation can be
achieved by modding the behaviors underlying it,
better behaviors can be achieved by modding the
mentd activity on which behaviors are based. This
way, it is possble to improve robot intelligence in
facing new and critical Stuaions.



Modding mental activity encompasses modeing
mentd entities and mentd entity interactions. Mentd
entities are not consdered as passive entities (mere
information Structures, mere static objects, operating
according to stated and fixed procedurd rules) but
as active entities, i.e. entities endowed with
autonomy. In fact, snce menta entities have to
dynamicdly interact to produce a globdly inteligent
behavior, it is essentia that they are provided with
individud and independent operation capabilities.
Therefore, we call them active mental entities,
stressing that they are autonomous and can operate
and cooperate according to their own goals and
drategies. So, recdling that "intelligence emerges
from the interaction of the components of the
sysems' [8], in our proposd, sysem intelligence
emerges from interaction of active menta entities.

4. AN EXAMPLE

In this section we present a smple example that
shows, in intuitive terms, how the proposed ideas
could be implemented in an actud robot, dlowing it
to ded successfully with complex problems and
unusud Stuations. It is assumed that the robot
control is managed by a didtributed architecture
composed by autonomous agents, each capable to
carry out specific activities. Each agent is endowed
with active menta entities: the interactions of active
mentd entities determine agent's (and consequently
robot's) behavior. For the sake of clarity and
samplicity we condder here only two types of active
menta entities, namely intentions and persuasions.
We say that an agent has an intention when it
commits itsdf to pursue an achievement. Intentions
are modeled as active mentd entities, snce we
assume that an intention is an autonomous entity
definitly committed to reech its achievement,
possbly cooperating or conflicting with other
intentions.

We say that an agent has a persuasion when it has
some bdief about the truth vdue of a given
propodition. Persuasons ae modded as
autonomous active entities snce we assume that a
persuasion is not just the passve result of some
perceptud or reasoning activity, but it is definitely
committed to reinforce itsdf, i.e to find new
eements to believe or disbdieve in the related
proposition and to verify the dready available ones.

In such activity a persuason may cooperate or
conflict with other persuasions.
The example concerns a department mail ddivery
robot, to which the user consggns an envelope to be
delivered to Mr. X. Interaction with the user is
managed by a gpecidised agent Ul (User
Interaction), which is characterized by a primitive
intention whose subject is "obey-the-user”.
According to thisintention, a new intention has to be
generated whose subject is "ddiver-mail-to Mr. X".
However, since Ul has no specific competence on
mall ddivering, it has to address the request of
cregting this new intention to another competent
agent. By resorting to its interface, Ul identifies the
MD (Mail Ddivery) agent to which the request is
addressed: the new intention whose subject is
"deliver-mail-to Mr. X" is therefore crested within
MD. MD has both generd knowledge about the
mail delivery task and specific knowledge about the
department personnel, as far as mal ddivery is
concerned. So MD knows that Mr. X is actudly a
department employee, that his office is office number
9, and that normdly, his office hours are from 9.00
am. to 5.00 p.m.. Since current time is 3.00 p.m.
(this information is provided on request by a
soecidised CLOCK agent), MD generates the
persuason tha Mr. X is now present in the
department.
This persuasion supports the persuasion that the
intention "ddiver-mail-to Mr. X" can be actudly
achieved. On these grounds, the intention "deliver-
mail-to Mr. X" can then daborate a dtrategy to
deliver mal to Mr. X. To this purpose, however,
some more detailed persuasion about where Mr. X
is has to be ingantiated. In absence of more specific
information, usng default knowledge that normaly
an employeeisin his office, the following persuasion
is generated: "Mr. X present-in-office". On the basis
of this persuason, the following smple Srategy is
eventudly generated:

task 1: goto office 9;

task 2: deliver the envelopeto Mr. X.

Task 1 is conddered firdt: it dill concerns a quite
generic and high-level task and must therefore be
asociated to a new intention. A request of
generating such intention is therefore addressed by
MD to the MM (Movement Management) agent.



MM, generates the intention "go-to-office 9" and,
exploiting his knowledge about building topology, it
generates then a drategy to reach office 9 and
beginsto redizeit.
It has to be dressed that, meanwhile, al the
mentioned menta components do not remain Smply
waiting for the accomplishment of the sdected
drategy. On the contrary, they reman active
intentions are continuoudy looking for better
drategies and persuasions are continuoudy looking
for new evidences supporting them. Moreover, it
can be assumed that some agents in charge of
sensory acquisition are dways active, because their
output is necessary to other agents in charge of very
essentid  primitive intentions, such as preserving
robot integrity. Sensory data can therefore be used
by intentions and persuasons for the activity
mentioned before,
While the robot moves towards office 9, the
intention "deliver-mail-to Mr. X" may eaborate the
following dterndtive Strategy:

task 1: find Mr. X around in the department

task 2: go near Mr. X

task 3: ddiver the envelopeto Mr. X.

This drategy relies on the persuasion that Mr. X is
not in his office but somewhere dse in the
depatment: "Mr. X present-but-not-in-office’.
However, before the Strategy becomes operative,
the persuasion has to find some support. To this
purpose, "Mr. X present-but-not-in-office” may
generate intentions like "recognize-voice-of Mr. X"
and "recognize-face-of Mr. X" to be addressed to
agents specidized in processng audio and video
input coming from sensory devices.

If sufficient resources are available, these activities
can be carried out in pardld while the robot moves
toward office 9, according to the first generated
drategy.

Let us suppose now that, while moving, the robot
gets near a glass wal behind which there is Mr. X.
Then the vison system recognizes Mr. X in front of
the robot and, therefore, persuasion "Mr. X present-
but-not-in-office" gets strong support, whereas "Mr.
X present-in-office’ is dismissed, snce direct
evidences prevail dways over default knowledge.
As a consequence, aso the first strategy generated
on the ground of "Mr. X present-in-office’ and the

relevant intentions are abandoned (note however
that they will revive if, for ingance, it will be redized
that Mr. X recognition was erroneous).

The second proposed strategy becomes then active
and, since task 1 has been achieved (find Mr. X
around in the department), task 2 is pursued (go
near Mr. X).

A request to create the intention "go-near-Mr. X" is
therefore addressed to the agent MM (which, in the
meanwhile, has dismissed dl the activities implied by
the firgd drategy). Suppose now tha Mr. X is
danding just in front of the robot. The god of
navigating towards such a fixed target is reduced to
the god go-forward. While the robot is moving
forward, the VC (Video Camera) and SRS (Sonar
Range Sensors) agents acquire and process data
about the extend world. Doing this, they
continuoudy generate or update persuasions about
the environment, whose subject is communicated to
the agent CA (Collison Avoidance).

Suppose now that, while the robot is gpproaching
the target, VC and SRS communicate to CA two
contradicting persuasions. SRS has the persuasion
that "there-is-an-obstacle-on-the-path”, whilst VC
has the persuason "no-obstacle-on-the-path”. CA
recognizes that it is impossble to take a decision,
given these contradicting persuasions, and therefore
decides that the conflict should be solved. It puts the
two persuasions face to face by notifying each of
them of the existence of the opponent persuasion.
The persuasions "there-is-an-obstacle-on-the-path”
and "no-obstacle-on-the-path” enter therefore a
debate in order to solve the conflict. Firgt of al, an
andysis of the motivations supporting them is carried
out: "there-is-an-obstacle-on-the-path” is supported
by the fact that sonar recelved reflected echoes,
"no-obstacle-on-the-path” is supported by the fact
that in the image collected by video camera nothing
but Mr. X is seen.

The persuasions "there-is-an-obstacle-on-the-path”
and "no-obstacle-on-the-path” are then in charge of
seaching evidence or other persuasons
corroborating their supports or undermining the
opponent's ones. For ingtance, ""no-obstacle-on-the-
path" can resort to genera knowledge (this
knowledge may be provided by the SRS agent
itself) that sonar readings are often erroneous and
notify it to "there-is-an-obstacle-on-the-path”. In



turn "there-is-an-obstacle-on-the-path” may reply
tha sonar readings are eroneous in Specific
conditions (near wall corners, in presence of noise
sources, etc.) that are not met in the present case.
Moreover "there-is-an-obstacle-on-the-path” may
atack directly "no-obstacle-on-the-path* by
resorting to generd knowledge provided by BT
(Building Topology) agent, thet, in the building, there
are invisble obstacles (such as transparent glass
wals).

Since "no-obgtacle-on-the-path” is not able to reply
to these arguments, "there-is-an-obstacle-on-the-
path” prevals the presence of an obgacle is
accepted and CA intervenes to modify the motion
plan, going around the glass wal and eventudly
reaching Mr. X.

5. CONCLUSION

The application of the proposed approach to AMR
navigation has been described in order to show its
potentid in practical contexts.

Due to space limitations and for the sake of darity,
only the basic ideas of our gpproach and an intuitive
and informal description of its application have been
given. However, a (prdiminary) complete forma
description of al the presented concepts has been
developed by the authors and a software
implementation in C++ on a Sun workgation is in
progress.
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