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1 Introduction: the concept of defeasible reasoning

The capability of drawing defeasible conclusions in presence of partial information is a crucial factor of intelligent
behavior. To achieve this capability, human beings resort to a particular kind of knowledge, called default knowledge.
The most significant property of default knowledge is that it can be exploited in the reasoning process even if there is
only partial information about the satisfaction of the preconditions which allow its application, on condition that there is
no reason to believe that such preconditions are not satisfied. If new information becomes available from which the
falsity of such preconditions can be deduced, the conclusions derived from the application of default knowledge have to
be retracted. This particular form of reasoning, involving the use of default knowledge, may be called defeasible
reasoning.
In order to build automated reasoning systems including defeasible reasoning capabilities, many extensions of classical
logic have been proposed as models of defeasible reasoning. These proposals, even if differing in many important
technical details, share a common conceptual ground, since they all rely substantially on the same conceptual model of
defeasible reasoning activity. Among the most notable and classic proposals in this field we mention default logic [7]
and nonmonotonic logic [5].
However, this conceptual model suffers from some important limitations, which severely restrict its applicability scope
and prevent it (as well as the approaches grounded on it) to correctly capture and represent some very general and
common cases of practical defeasible reasoning. In order to overcome these limitations, both a more general conceptual
model of defeasible reasoning activity and a formalism capturing the new concepts introduced are needed.
Following the track of some previous investigations in this area [1] [2], this paper points out a further limitation of most
known models of defeasible reasoning which (as to our knowledge) has never been highlighted before.
The paper is organized as follows. In section 2 we briefly review some approaches to defeasible reasoning and identify
the conceptual model underlying them. In section 3 we define a property for defeasible reasoning formalisms, called full
nonmonotonicity: we point out that this property has received a very limited attention in the past and that most
approaches to defeasible reasoning fail to satisfy this property. In section 4, we present a common sense example of
defeasible reasoning (let’s call it the "ill secretary" example) that requires the full nonmonotonicity property and that,
therefore, can not be adequately represented in most classical defeasible reasoning models. Finally, in section 5, we
describe a new approach to modeling defeasible reasoning, based on the concept of A- uncertainty [2]. We discuss the
conceptual advantages of this approach and we show that it can be properly used to deal with the "ill secretary"
example and with similar kinds of defeasible reasoning activity.

2 Defeasible reasoning: a quick survey

This section presents a very synthetic review of some approaches to defeasible reasoning. Since there is a huge number
of papers and different approaches about this topic, we focus on some of the most well-known ones and mention only
their basic aspects, which are however sufficient for the subsequent discussion.

2.1 Default logic
In default logic [7], default knowledge is represented through specific inference rules called defaults. A default is an
expression of the form: p(x) : j(x)/ c(x), where p(x) is the prerequisite, j(x) is the justification, and c(x) is the consequent of
the default. The meaning of the formula is: if p(x) is known and if j(x) is consistent with what is known, then it is possible
to deduce c(x). A default is called normal if j(x) = c(x).
A typical example of normal default is: bird(x) : fly(x) / fly(x), which means: if x is a bird and it is consistent with other
available information to assume that x flies, then infer that x flies.



2.2 Non monotonic logic and autoepistemic logic
In nonmonotonic logic [5], the concept of "conceivable", is represented through a modal operator M. The formula Mp
means that p is conceivable, that is equivalent to state that ¬ p is not provable.
Default knowledge is represented by means of implication relations of the form:
p(x) ∧  Mc(x) → c(x).

Autoepistemic logic [6] is a derivation of nonmonotonic logic, which moves the attention from reasoning about the
conceivability of propositions to reasoning about what is believed about propositions.
In autoepistemic approach, the reason why we infer that Tom can fly from the fact it is a bird is that if Tom could not fly,
we would know it. So, in absence of more specific information, we assume we can reason as if no further interesting
information could come, because we believe that if it could, we knew it. The modal operator of nonmonotonic logic,
which will be denoted here as Lp, assumes therefore the meaning of "p is believed".
Default knowledge can then be represented as:
p(x) ∧  ¬c(x) → L ¬c(x),
which is the formal translation of " if the premise hold and the consequence does not, I would know it".

2.3 Circumscription
Circumscription [3] is an alternative technique which aims to formally represent the intuitive tendency to minimize the
assumptions concerning some "abnormal" notion, restricting abnormalities only to cases where they are manifest.
Circumscription can be used to model defeasible reasoning [4] by introducing a predicate ab, denoting abnormality,
which has to be circumscribed, and representing default knowledge by implication rules having the form:
p(x) ∧  ¬ab(x) → c(x).

2.4 The underlying conceptual model: rules and exceptions
Given this very quick survey, it is in any case possible to identify a basic conceptual model of defeasible reasoning
shared by these approaches (and by their innumerable technical variants appeared in the literature).
This model relies on the idea that the rules, i.e. the pieces of knowledge used in reasoning activity such as "birds fly"
(or, more formally, IF bird(x) THEN flies(x)), may admit exceptions and that it is impossible to include an explicit and
detailed representation of all these exceptions within the rules themselves.
In these cases, the premise of a rule is only partially specified (if this is the case, the rule is called a "default rule") and
the fact that an individual satisfies the premise does not guarantee that the individual is not an exception. Since, during
reasoning activity, the fact that the premise holds is sufficient to enable the application of a default rule (as well as of
other "normal" rules), it may happen that a rule is applied, inadvertently, to an "exceptional" individual.
Subsequently, when the fact that the individual was an exception is noticed, the application of the rule reveals incorrect
and the consequences of the application have to be retracted.

To put it in other words, it may be stated that the premise of a default rule is sufficient to partition the set AI of all
individuals in two subsets: a set RNA of individuals to which the rule certainly does not apply (i.e. those individuals
which do not satisfy the premise) and a set RPA of individuals to which the rule could possibly be applied. This second
set is larger than the precise set RMA of individuals to which the rule must be applied, since it includes also a set EXC
of exceptions. However, determining exactly the set RMA and/or verifying a priori if and individual belongs to RMA, is
considered impossible (or unpractical): the set RPA is thus used to discriminate the individuals to which the rule is,
defeasibly, applied. Of course, if subsequently it emerges that an individual to which the rule was applied belongs to
EXC, the derived conclusions have to be retracted.

This basic conceptual model lies on the foundations of all the approaches to defeasible reasoning introduced above.
As far as the concept of exception is concerned, two additional remarks are worth to be introduced, since they will be
recalled in the following.
First of all it has to be noted that, within the set RPA, only the distinction between RMA and EXC is considered: no
further conceptual refinements (i.e. no subpartitions) are envisaged for these sets.
Moreover the approaches differ in the way the fact that an individual is an exception is noticed. In default logic,
nonmonotonic logic, and autoepistemic logic the concept of exception is strictly related to the negation of the
consequent of the rule. In other words, in order to retract the application of a rule such as IF bird(x) THEN flies(x) to an
individual, let say Tweety, it is necessary to derive ¬flies(x), through some other reasoning path (for instance IF
ostrich(x) THEN ¬flies(x)). Though rather widespread, the identification of exceptions with the negation of the



consequent suffers from some significant conceptual limitations (the interested reader may refer to [2] for a thorough
discussion about this aspect).
In circumscription, the representation of exceptions is related to the concept of abnormality, which is formally
represented by a predicate ab(x), which is true if the individual x has to be regarded as abnormal, i.e. as an exception.
Default rules have the form IF bird(x) AND ¬ab(x) THEN flies(x), and the consequences of the application of a rule have
to be retracted if, through some reasoning path, the abnormality of the individual is asserted. This view of exceptions,
which does not strictly relies on the negation of the consequence, should be regarded, in our view, as preferable.
However, it has to be remarked that, in the examples presented in literature we are aware of, actually abnormality always
corresponds to the negation of the consequent.

3 The full nonmonotonicity property

Defeasible reasoning is commonly denominated also nonmonotonic reasoning. This denominations refers to a technical
property of the logical formalisms which aim to model defeasible reasoning activity.
In fact, classical logical formalisms, which are admittedly unable to represent defeasible reasoning, satisfy a property
called monotonicity, which, in a restricted form, can be defined as follows: given three different sets A, B, C of
expressions, if A |_ B, then (A ∪ C) |_ B.

Of course, in any approach to model defeasible reasoning, monotonicity property can not hold, since the acquisition of
new information (e.g. the fact that Tweety is an ostrich, represented by C) in addition to previously available one (e.g.
the fact that Tweety is a bird, represented by A) may deny some previously deduced conclusions (e.g. the fact that
Tweety flies, represented by set B).

In order to introduce now our definition of full nonmonotonicity and to compare it with nonmonotonicity in its usual
understanding, it is necessary to set up an introductory conceptual background.
In general, in any formal reasoning context, we have some general rules defining how expressions (which are the basic
instrument to represent facts about the world) should be formed (e.g. rules defining Well Formed Formulas in a logic
formalism).
These rules allow to generate the (possibly infinite) set E of all expressions one might consider when reasoning about
some piece of the world. Of course, (and happily) the reasoning activity normally needs to deal only with a very
restricted subset of E.
At any stage of the reasoning activity, the set E can be partitioned in two subsets: the set AE of expressions for which a
truth value (namely, TRUE or FALSE in classical logic) has been explicitly asserted (AE stands for asserted expressions)
and the set UE of expressions to which a truth value has not been explicitly ascribed (UE stands for unasserted
expressions). The set UE includes both the expressions to which it is actually impossible to ascribe a truth value, for
instance due to a lack of information, and the (very numerous) expressions which are not considered in the reasoning
activity, though their truth value could be derived given the available information (for instance, if a proposition p is
asserted to be TRUE, also any expression of the type p ∨  q, could be explicitly asserted to be true, but, of course, the
bothersome and useless activity of deriving all these assertions is normally avoided).
Moreover, the set AE can be further partitioned in two subsets, the set TE of expressions whose asserted truth value is
TRUE, and the set FE of expressions whose asserted truth value is FALSE.
Each step of the reasoning activity can be seen, in general, as a modification of the partitions defined above, which
moves one or more expressions from a partition to another one.
In classical reasoning, this modification is always and only the shift of expressions from UE to AE.
In fact the monotonicity property implies both that asserted expressions can not revert to unasserted and that the truth
value ascribed to an expression can not be changed. So the monotonicity property implies both that the set AE is
monotonically growing and that there are no cross shifts between TE and FE.
That being stated, an approach can be defined nonmonotonic if it fails to satisfy either one of the properties entailed by
monotonicity. Therefore, we can define two types of nonmonotonicity (denoted as AU- and TF-respectively) for a
reasoning formalism:
• a reasoning formalism is said AU-nonmonotonic, if it allows an expression to move from AE to UE;
• a reasoning formalism is said TF-nonmonotonic, if it allows cross movements of expressions between TE and FE.
As we will discuss later, most approaches to defeasible reasoning are only TF-nonmonotonic.
We can now define the property of full nonmonotonicity as follows: a reasoning formalism is said fully nonmonotonic, if
it is both AU-nonmonotonic and TF-nonmonotonic.



The existence of two types of nonmonotonicity has never been pointed out in previous literature. As a matter of fact, the
existence of two distinct types of exceptions, leading respectively to AU- and TF-nonmonotonicity is suggested by
previous considerations. However such distinction can not be explicitly captured by any of the formalisms presented in
section 2, because they envisage only one representation for default rules and, consequently, for exceptions. More
precisely, recalling that default logic, nonmonotonic logic, and autoepistemic logic allow revision only when the
negation of the consequent has been explicitly asserted, it is easy to show that such formalisms enjoy only TF-
nonmonotonicity. On the other hand, since the concept of abnormality in circumscription is more general (and more
ambiguous), this formalism is, at least in theory, open to full nonmonotonicity. However, since no explicit distinction
between different classes of abnormalities is envisaged in this formalism, the actual achievement of full nonmonotonicity
in circumscription is left to the user of the formalism rather than being enforced by proper structures within the formalism
itself.
The meaning and the importance of full nonmonotonicity property in common sense reasoning will be better illustrated
by the example presented in the following section.

4 The ill secretary example

Suppose you arrive at work at 8 a.m. and you are wondering whether your secretary, say Helen, who normally arrives at
9 a.m., will come today. By default, you can assume she will, because today is a normal working day and normally Helen
gives notice in advance of a programmed absence (for example, vacation).
Now imagine that a colleague of Helen tells you that yesterday Helen had an accident and she has a broken leg. Given
this information, you easily deduce that she will not come, and retract your precedent assumption: this is a case of TF-
nonmonotonicity, because a proposition which was before asserted as TRUE, is subsequently considered as FALSE.
Consider now a different case: again, while you are waiting for Helen, a colleague informs you that yesterday Helen went
home with a bad cold.  Given this new information, your confidence in Helen's coming decreases but, on the other hand,
you can not exclude she will come (since she might feel better or even come with a cold). In other words, you are now
completely in doubt about the fact that Helen will come and would not prefer neither the hypothesis that she will come
nor that she will not. This is a case of AU-nonmonotonicity, because a proposition which was before asserted as TRUE,
become subsequently not asserted any more.
It is worth to remark, referring to this simple example, the significant conceptual difference existing between TF- and AU-
nonmonotonicity.
TF-nonmonotonicity refers to a case where the new incoming piece of information improves our information state about
a specific subject, namely a proposition, and enables us to ascribe a more correct truth value to the proposition itself. So,
hearing that Helen has a broken leg improves our information state about her coming and allows us to state that she will
not come, contrary to our previous assumption, based on a less reliable information state (namely, our default
knowledge).
AU-nonmonotonicity refers to a more peculiar, though very common, case, where the new incoming piece of information
helps us to realize that we are more ignorant about a specific subject than we believed to be. So hearing that yesterday
Helen had a cold, we realize that we are completely in doubt about the question if she will come today, and retract our
previous conclusion not because it has to be replaced by a more reliable one, but because we are unable to draw any
conclusion.
It may seem a little bit paradoxical that the acquisition of new information reduces the scope of our deduction capability.
However, the ill secretary example shows that this case can be found in very simple (and common) examples of common
sense reasoning. Moreover, the paradox reveals to be only apparent if one considers that, also in this case, the
acquisition of new information increases our knowledge. Simply, in this case the new piece of knowledge we learn is our
inability to make deductions. In fact, learning that we are ignorant about something, definitely increases our global state
of knowledge, that includes both what we know and what we know to ignore.
Due to space limitations, we limit ourselves to present here the ill secretary example. However we claim (and the reader
may easily imagine) that there are a plenty of similar examples both in daily common sense reasoning and in more
specific application fields of defeasible reasoning (just think over reasoning in medicine).
In the light of this consideration, the previously showed inability of existing formalisms to explicitly deal with both TF-
and AU-nonmonotonicity seems to represent a very important drawback. In the next section we present a proposal of a
formalism aiming to overcome this limitation.

5 A fully nonmonotonic reasoning formalism



The approach we present here is based on an explicit representation of A-uncertainty, i.e. of the uncertainty about the
applicability of a rule to an individual (for a thorough discussion about the concept of A-uncertainty see [1]). Since A-
uncertainty concerns the applicability of a certain chunk of knowledge to an individual it is a property of the pair
(knowledge, individual) and depends both on the features of knowledge and of individuals, so that it is possible to
imagine, in principle, a different A-uncertainty assessment for each individual to which a given chunk of knowledge has
to be applied. Moreover, as long as new information about the individual are acquired, the assessment of A-uncertainty
relevant to the individual might need to be adjusted.
Starting from this concept, we propose here a simplified version of the formalism introduced in [2].
In our approach, uncertainty about a proposition, say the proposition A, in presence of a chunk of available evidence E,
is represented by means of a pair (belE(A, true), belE(A, false)), say (btA , bfA ) for short. Such pair is called belief state,
bels for short. The belief state represents how much one is authorized to believe in the association between a given
proposition and its possible truth values, on the basis of the available evidence. Each one of the two elements of a belief
state is a belief degree, represented by a real number in the interval [0, 1]. The concept of belief degree is related to the
intuitive concept of amount of evidence supporting the credibility that a certain proposition should have a certain truth
value. So, belE(A, true)=0 means that there is null (or negligible) evidence supporting the credibility that proposition A
has the truth value true (note that this is totally different from excluding that true is a possible truth value for A).
Turning now to uncertainty about rules, given a production rule R, an individual x, and a body of evidence E, the A-
belief  of R with respect to x under E, also denoted by A-belE(R, x), or baR for short, is a belief degree which provides a
measure of how much one is authorized to believe that the rule is applicable to a given individual x.
As stated in [1], the cases in which a rule does not apply may be interpreted by assuming either a conservative attitude
or an evolutive attitude. In fact, given the question "what do we know about the consequent in the cases where a rule
does not apply to an exceptional individual ?", two answers are possible:
• according to a conservative attitude: we know nothing about the consequent,
• according to an evolutive attitude: if the individual is an exception, the consequent is false.

The additional knowledge concerning attitude, can simply be represented as a dynamic property attE(R, x) which can
assume two values, E (evolutive) or C (conservative). For each rule, a general value of attE(R,x) can be stated, which has
to be modified if new specific information about the individual is acquired.
Two simple propagation schemes (see [2] for a detailed discussion) for computing the belief state of the consequence
B(x), from the belief state of the premise A(x) and the A-belief of the rule R= IF A(x) THEN B(x) can be proposed:
In the evolutive attitude:

btB = btA•baR•(1 - bfA ) bfB = btA•(1 - baR)•(1 - bfA )
In the conservative attitude:

btB = btA•baR•(1 - bfA ) bfB = 0.

The proposed formalism can be applied to the ill secretary example as follows.
The default rule considered is: R = IF workingday(today) THEN comes(Helen).
You know for certain that today is a working day, namely bels (workingday(today)) = (1, 0). You know also that the rule
almost certainly applies, namely baR = 0.99, and adopt an evolutive attitude. Therefore you obtain bels (comes(Helen)) =
(0.99, 0.01), expressing the fact that you are almost sure Helen will come and only a very little part of your belief is left to
contingencies.
Now suppose you learn Helen has a broken leg. It is possible to model the impact of this information as a decrease of the
belief in the applicability of the rule, falling to zero (baR = 0), while the attitude remains evolutive. In this case you obtain
bels (comes(Helen)) = (0, 1), expressing the fact that you are now sure that Helen will not come. So a decrease of the
value of baR realizes TF-nonmonotonicity in our formalism.
On the other hand suppose you learn Helen yesterday had a cold. The impact of this information can be modeled again
through a decrease of the belief in the applicability of the rule, (baR = 0), but in this case there is also a shift from the
evolutive to the conservative attitude.
The different propagation formulas applied in these case give therefore: bels (comes(Helen)) = (0, 0), expressing a total
ignorance about the question if Helen will come or not. So the combination of a decrease of the value of baR along with
a change from evolutive to conservative attitude realizes AU-nonmonotonicity.

Due to space limitations, we can not enter a thorough discussion about merits and flaws of the proposed formalism nor
carry out a detailed comparison with other formalisms. However we remark that, differently from many approaches to
defeasible reasoning we are aware of, the formalism we propose offers an explicit and cognitively plausible way of
realizing the full nonmonotonicity property, which, though very important for practical applications, has escaped the
attention of most researchers in the field of defeasible reasoning in the past.
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