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Abstract

In multi-agent systems, there is the need to
exchange uncertain information between
distinct and independently developed software
components. This requires that such
components share a common uncertainty
interchange format and poses, therefore, a
serious and still poorly considered problem, in
face of the variety of existing uncertainty
theories. In fact, imposing that all components
adopt the same uncertainty theory is often
unrealistic. Defining a common uncertainty
interchange format, able to guarantee
compatibility with several different
approaches, is an open research problem. In
this paper we discuss the basic issues that need
to be dealt with to face such a problem and
formulate an initial proposal based on
imprecise probabilities.

1 Introduction

One of the key issues in the development of multi-agent
systems is the definition of an interchange format for
communication and information exchange among
different agents. The most influential proposal in this
area is the Knowledge Interchange Format (KIF) [8],
which is a language designed for use in the interchange
of knowledge among disparate computer systems.
Actually, KIF is a prefix version of the language of first
order predicate calculus with various extensions to
enhance its expressiveness.
As to our knowledge, KIF considers only the case where
the information to be exchanged is represented by binary
and certain sentences and simply does not address the
case where such information is fuzzy and/or affected by
uncertainty. This clearly represents a severe limitation,
restricting the applicability of this and similar proposals
to the application contexts where the importance of
fuzziness and uncertainty is negligible.

In this paper we address the problem of defining a
generic uncertainty interchange format for the exchange
of uncertain information among heterogeneous agents,
each one featuring a specific uncertain reasoning
paradigm. The main objective of this effort is generality,
namely the ability to guarantee compatibility with
different existing theories and approaches.
Defining an interchange format for uncertainty is far
more difficult than for 'certain' knowledge: in fact, it
seems that there is no universally recognized common
conceptual background underlying different uncertainty
theories and even the same theory may have very
different interpretations at the semantic level. The
present work aims at analyzing the main issues involved
in the definition of an uncertainty interchange format,
pointing out the relevant open problems, and presenting
a preliminary proposal based on imprecise probabilities.
The paper is organized as follows. In section 2 a generic
architecture for interchange is described. In section 3 the
problem of defining an uncertainty interchange format is
analyzed and a proposal based on imprecise
probabilities is formulated. Section 4 deals with inter-
format translations and introduces transformation
methods from imprecise probabilities into some other
well-known representations, namely precise
probabilities, belief functions, and possibilities. Finally
section 5 summarizes and concludes the paper.

2 An architecture for multi-agent uncertainty
interchange

The architectural scheme we consider is based on the
assumption that an agent might completely ignore the
features of the internal representation adopted by its
partners and should not need to negotiate preliminarily
any aspect of the interchange. While this assumption
prevents the potential advantages of a tailored
communication, it is coherent with the goal of
maximum generality: for instance, it allows indirect
communication through shared data bases, where the



agent inserting new information does not know a priori
who will eventually access it.
We will now examine the process of exchanging a piece
of uncertain information between a sender, called agent
S, and a receiver called agent R.
We assume that each agent X uses a specific internal
representation language LX, whereas the common
interchange format language is denoted by LIF.
Agent S produces the information to be exchanged and
needs to translate it from LS into LIF. Translated
information is then transmitted to agent R, which is then
in charge of translating it from LIF into LR.
Since LIF should be, in general, more expressive than
any specific language LX, any translation of the kind
LX → LIF should involve a null (or minimal) distortion
or loss of information. On the other hand, any translation
of the kind LIF → LX may involve some possibly
significant information loss or distortion, since it goes
from a general format to a more specific one, whose
expressiveness may be more limited.
Therefore it may be useful for an agent X to include a
distortion evaluation component DEX, able to evaluate
the distortion possibly introduced in the translation, by
comparing the information originally received and the
translation results. The output of DEX may then be
considered by an agent-specific filter FX, that is in
charge of deciding whether to discard the received
information or forward it to the internal processing
activity. In summary, an agent X able to both send and
receive information has to be endowed with two
mandatory modules, namely an internal-into-common
and a common-into-internal translator, and may also
include two optional modules, namely a distortion
evaluator and an acceptance filter.
For each agent, the specification of all these modules
partly depends on the features of the internal format
adopted, however both translators and evaluator should
be designed according to the same general principles in
any agent, in order to guarantee the effectiveness and the
correctness of the exchange. On the other hand, the
acceptance filter is totally implementation dependent, as
an agent should be completely free to decide what to
take into account on the basis of any criterion.
In the rest of the paper we will focus our attention on the
translation modules, as they represent the minimal
mandatory endowment in order to enable the
interchange.

3 Defining an uncertainty interchange format
As well-known, many different theories have been
developed and are currently investigated in the area of

uncertain reasoning. Their general validity,  practical
applicability and limitations have been and still are
debated. Moreover, also the definition of a precise
applicability scope, stating which theory should be
adopted to face a specific uncertain reasoning problem,
is lacking. The above remarks  confirm how difficult is
the problem of defining a general concept and format for
uncertainty representation.
This problem calls for a series of questions to be faced,
which are orderly discussed in the following.

3.1 Basic assumptions

Before proceeding with the analysis of the interchange
problem, it is necessary to make some assumptions
which allow us to better specify and delimit it:

1. the information exchanged concerns uncertainty
judgements1 about (binary) non-conditional events;

2. all agents share a common finite universe of
discourse U, and the events about which they
formulate their uncertainty judgements are taken
from ℘(U), which is the powerset of U. In other
words, U is a finite partition made up of atoms
(pairwise disjoint non-impossible events whose
logical sum is the certain event Ω).

Clearly both assumptions are limiting and not
completely realistic, but are useful in order to face
gradually the problem; it is also important to note that,
as will be stressed in (b) of sect. 3.5, they are not forced
by the interchange format we adopt.

3.2 Uncertainty judgements

In presence of uncertainty, each possible truth value of
an event is associated to a judgement, that qualifies the
belief attitude of the agent with respect to the attribution
of such a truth value to the event.
In general, it is possible to distinguish two main classes
of uncertainty judgements:
• absolute judgements, which concern a single pair

(Event, Truth Value)2 and qualify agent's belief
attitude about it through some quantification;

• relational judgements3 (often also called
comparative or qualitative), which define a relation
between the belief attitudes concerning two or more
ETV pairs (e.g. by stating that the truth of an event
is more credible than that of another one, or is more

                                                
1 This notion will be better specified in the sequel.
2 In the sequel, such a pair will be termed ETV for short.
3 It is worth noting that the so called 'symbolic approaches' to
uncertainty, i.e. the various families of nonmonotonic logic,
can be regarded as a special case of relational judgements.



credible than its falsity).

In general, a software agent may be able to deal with
both absolute and relational judgements. Being based on
two different and, in a sense, complementary basic
notions, namely quantification and relation, absolute and
relational judgements should be considered as distinct
concepts, that can not be easily converted into each
other. We believe that a complete uncertainty
interchange format should encompass a distinct
representation for absolute and relational judgements.
However, in order to limit the scope and the extension of
this paper, we focus here on absolute judgements.
Absolute judgements can be further classified as precise
or imprecise:
• precise judgements associate a single quantification

with an ETV pair;
• imprecise judgements associate a set of

quantifications with an ETV pair.

Clearly precise judgements are a special case of
imprecise judgements.
Imprecise judgements may in turn be classified as:
• crisp, if the sets of quantifications associated with

ETV pairs are classical binary sets;
• fuzzy, if the sets of quantifications associated with

ETV pairs are fuzzy.

Again, crisp sets are a special case of fuzzy sets.
Clearly, the notion of fuzzy imprecise quantifications is
the most general and therefore appears to be a good
basis for the definition of the interchange format.
However, two difficulties have to be acknowledged:
• since a fuzzy set can in general be defined by any

membership function, the formalism may turn out
to be very complex, unless the class of admissible
membership functions is constrained in some way;

• some of the most known uncertainty theories
(imprecise probabilities, belief functions, possibility
theory) can be characterized in terms of crisp
imprecise quantifications, namely intervals.

For these reasons, while recognizing the potential
importance of fuzzy sets for future developments, we
limit the scope of the present paper to quantifications
expressed through crisp intervals included in the real
interval [0, 1], namely through a couple of numbers
(a, b): a ≤ b; a, b ∈ [0, 1].

3.3 Message structure

After deciding the format for a single uncertainty
judgement, it should be defined which is the standard
format for an exchange of uncertain information.
We assume that the agents adopt one of the existing

standards for inter-agent communication, such as
KQML [6] or FIPA ACL [7]: the choice of the
communication language is rather indifferent, since our
work focuses on contents language, namely on the
representation of the information carried by the message
rather than on the structure of the message itself. Clearly
these two aspects are independent.
As for the contents language, we suggest that the
minimal amount of information to be exchanged
consists of the complete belief state concerning an event,
namely of the uncertainty judgements concerning all its
possible truth values. In the case of binary events, the
belief state is clearly represented by a pair of
judgements. There are two main reasons for exchanging
complete belief states:
• in general, judgements concerning different truth

values are not tightly constrained (in precise
probability theory they are, but in other theories
they are not), therefore a complete belief state is
necessary to express the overall information one
agent has about an event;

• providing partial information about an event
(namely an incomplete belief state) may cause an
undesirable distortion on the receiver side since the
receiver might tend to integrate the incomplete
information according to its own internal theory,
possibly yielding significantly distorted results with
respect to the complete belief state of the sender.

A message contents carrying uncertain information is
therefore constituted by the specification of an event,
which can be provided using KIF, and by the
specification of the relevant belief state, which, in the
binary case, is a couple of couples of real numbers
within the [0, 1] interval, as specified above.

3.4 Semantics

Considering the semantic aspects of the interchange
format, it has to be noted that defining ‘the’ semantics of
a representation is a serious problem even if one limits
himself to a single uncertainty theory. Just to mention
some of the most known ones: in probability theory, a
subjective and a frequentist interpretation do exist; belief
functions have been regarded either as a special case of
imprecise probabilities or as an autonomous concept
related to the representation of evidence [12];
possibilistic reasoning has been given both a preference-
based and a similarity-based semantics [5].
Given that even individual theories have not a
universally accepted semantics, it is hard to pretend that
a generic interchange format has one. What seems to be
lacking is a basic ontology of uncertainty and uncertain
reasoning, whose definition would provide a reference



framework for comparing different approaches.
Information interchange, however, necessarily requires
some common background, so that a piece of
information still preserves at least part of its initial
meaning once translated first into the interchange format
by the sender and then into a new specific format by the
receiver. In our opinion, such a background can be
provided by imprecise probability theory.

3.5 Imprecise probabilities and the interchange
format

In the theory of coherent imprecise probabilities, as
developed in [13], it is assumed that the following
conjugacy relation holds between the lower ( P ) and the
upper ( P ) probability of an event E:

(1) P(E) = 1 − P (¬E).

This enables us to consider lower (alternatively, upper)
probabilities only, whenever they are defined on a set of
events closed under complementation; in sect. 4 we shall
sometimes exploit upper probabilities, here we mainly
refer to lower probabilities.

3.5.1 Definition [13] Given an arbitrary (finite or not)
set of events S, P(·) is a coherent lower probability on S
iff, ∀ m, ∀ E0,…,Em ∈ S, ∀ si ≥ 0, i = 0,…,m, defining
I(E) as the indicator of E (I(E) = 1 if E is true, I(E) = 0 if
E is false) and putting

G =∑
=

m

i
is

1

[I(Ei) − P(Ei)] − s0[I(E0) − P(E0)] ,

it is true that max G ≥ 0.

Def. 3.5.1 weakens de Finetti’s coherence principle [2],
and a precise probability (coherent by de Finetti’s
definition) is indeed a special case of (coherent)
imprecise probability (where P(⋅) = P (⋅) = P(⋅)).

Coherent4 imprecise probabilities are a very general tool,
which generalizes various uncertainty measures. In
particular, a belief function as defined in [11] is a special
case of lower probability [14], and so is a necessity
measure which can be seen as a special case of belief
function (actually, as a consonant belief function) [3]
[12], while a possibility measure is a special case of
upper probability [14].
The main advantages assured by the use of imprecise
probabilities for an interchange format are:

(a) no translation is needed from the agent internal

                                                
4  We shall usually omit the term ‘coherent’ in the sequel,
when referring to coherent imprecise probabilities.

representation to the common interchange format
whenever the internal representation is based on an
uncertainty measure which is a special case of imprecise
probability, like the (quite common) ones mentioned
above (and others, for instance 2-monotone probabilities
[14]). In fact, in such instances the information produced
by the agent may be simply read as an imprecise
probability in the interchange format, without modifying
any of its numerical values.

(b) The constraints in sect. 3.1 might be widely relaxed
while keeping on using an interchange format based on
imprecise probabilities. In fact, as appears from def.
3.5.1, coherent lower (and upper) probabilities are
defined on arbitrary sets of events, so there is no need
either to put S = ℘(U) or to consider finite sets of
events. Also, by the extension theorem [13], an
imprecise probability on S can always be coherently
extended to any superset of S, and this allows
exchanging information in a dynamic setting where the
universe of discourse is not fixed.
Further, these features are shared also by generalizations
of imprecise probabilities to conditional imprecise
probabilities and to (coherent) conditional previsions
(the latter are suited for handling information on
conditional random numbers) [13].

Of course, there are important ways of expressing
uncertainty which are not special cases of imprecise
probabilities and therefore would need some translation
before using the proposed interchange format: we
mention fuzzy judgements, which should be reduced to
crisp intervals, and comparative probabilities, for which
a realization problem (by means of an imprecise
probability) arises, and it is not guaranteed a priori that it
always has a solution.
Imprecise probabilities (and in particular belief functions
and possibility measures) weaken the tight additivity
constraint of precise probabilities P(E) + P(¬E) = 1
replacing it by (1) (substitute P, P  with, respectively,
Bel, Pl for belief functions, and N, Π for possibilities, N
being a necessity measure, Π a possibility). At a
semantic level, the question arises whether constraints
among the uncertainty judgements concerning the
different truth values of an event should be enforced in
the interchange format. Our answer is intermediate: on
the one hand, a constraint-free representation is more
general than a constrained one, on the other hand,
reasonably complete and solid theoretical treatments
mainly exist for coherence-based theories.
Therefore, we consider in this work only quantifications
that respect the constraints imposed by coherent
imprecise probability theory.



4 Inter-format translations

In the following, we shall consider translations with
reference to precise and imprecise probability, belief
functions, and possibility theory.
Recalling (a) of sect. 3.5, translations from LS into LIF

are trivial.
Translations from LIF into LR involve the problem of
transforming an imprecise probability into: a precise
probability, a belief function, or a possibility. Problems
of this kind have no throughout accepted solution: every
translation mechanism involves some arbitrariness and
is questionable in some respect.
Let µL, νL be two uncertainty measures on the same set
of events J. The subscript L denotes lower uncertainty
measures (i.e. lower probabilities, beliefs, necessities).
The following points clarify the  criteria underlying the
translation methods we propose:

(a) when comparing µL, νL it may appear that µL is
intrinsically more precise than (or at least as precise as)
νL. In this case, translations from a format using µL into
a format based on νL should give a uniformly more
imprecise evaluation (vice versa when passing from νL

to µL). This consistency principle leads operationally to
the dominance condition

(2) µL(E) ≥ νL(E), ∀ E ∈ J

but does not determine, in general, a unique νL.

(b) The transformed measure νL should be as close as
possible, in some sense, to the original measure µL. If (a)
is applied, a simple way to interpret (b) is to choose νL in
order to minimize

(3) S = Σ E ∈ J (µL(E) − νL(E)).

In the sequel we shall apply (2) and (3) (with the
exceptions noted below), as well as analogous
conditions when passing from a more precise to a less
precise measure or for translations concerning upper
uncertainty measures.
The consistency principle will be applied without
exceptions. To use it we need to compare the precision
of imprecise probabilities with that of each of the other
three measures.
Imprecise probabilities are less precise than
probabilities, but are more precise than possibilities/
necessities: a couple (Ν(Ε), Π(Ε)) expressing the
necessity and possibility of E is constrained to have the
form [0, Π] or [N,1] by elementary properties of these
measures, but this means that [Ν(Ε), Π(Ε)], viewed as
an imprecise probability, is always either lower (if
N = 0) or upper (if Π = 1) maximally imprecise.

Belief functions appear to be less precise than imprecise
probabilities, by the following inferential argument,
showing that they may produce less precise inferences:
if P(⋅) is an unconditional lower probability defined on
the relevant events and P(B) > 0, it is known [14] that its
vaguest (or least-committal) coherent extension on A|B
is such that

(4) P(A|B) ≥ P(A ∧ B)/(P(A ∧ B) + B)(P ¬∧A )

and that equality holds in (4) if P(⋅) is a belief function
(actually, also if P(⋅) is 2-monotone).

Principle (b) and (3) cannot be applied when translating
imprecise into precise probabilities, and this is easily
seen to depend on the equality P(E) = 1 – P(¬E). In this
case we shall adopt a ‘centrality’ criterion, so that P(E)
tends to the midpoint between P(E) and P (E) (see
4.2.1).
Imposing (b) is also conflicting with preference
preservation requirements like µ(E) ≥ µ(F) ⇒ ν(E) ≥
ν(F), ∀ E, F ∈ ℘(U). In fact, the additional constraints
due to preference preservation are often very strong and
necessarily widen the imprecision gap between µ and ν.
We shall impose preference preservation only
occasionally (see 4.2.3), partly giving up (b) (see also [4]
for comparisons among conflicting principles in the
probability/possibility transformation case).

4.1 Translating belief states about a single event

As noted in sect. 2, the belief state of an event is
represented by two couples, concerning respectively the
truth and falsity of the event, but since (1) holds in the
theories we consider, one couple can be deduced from
the other in our framework. Although it is convenient to
use both couples in the definition of LIF, especially to
allow compatibility with less constrained theories, we
shall consider in the sequel, for conciseness, only the
couple (lT , uT) concerning the truth of E, where lT (uT) is
interpreted in LIF as the lower (upper) probability of E.
Translations from LIF are straightforward if LR is based
on imprecise probabilities or belief functions (in the
latter case, because every lower probability on {E,¬E}
is a belief function).
In the case of precise probability, the translation consists
of selecting a single value from an interval: the midpoint
of the interval is a natural choice.
We thus obtain: P(E) = (lT + uT)/2.
Translations into possibilities are more articulated: by
elementary necessity/possibility properties, and unless
uT = 1 or lT = 0, a sort of stretching of the probability
interval in one direction is required.



This can be obtained by translating uT into a possibility
value 1, if 1 − uT < lT , i.e. if uT is closer to 1 than lT is to
0, or translating lT into a necessity value 0, if 1 − uT > lT.
The case

(5)    1 − uT = lT

shows however a singularity of this method, that is
present, though unnoticed, when P(E) = 0.5 (which is a
special case of (5) with uT = lT) also in the version
proposed for precise probabilities in [4]. In fact, the case
of uniform probabilities is equated, in possibility theory,
to ‘total ignorance’: in absence of any preference, we get
the extreme assignment Π(E) = 1, N(E) = 0 (and hence
Π(¬E) = 1, N(¬E) = 0), which should also be the
translation of an imprecise probability assignment
obeying (5), since again we have no ground for
modifying one rather than the other imprecise
probability measure.
However in these cases the probability → possibility
translation operator behaves discontinuously. To
exemplify, put lT = 0.5, uT = 0.5 + ε, with a quite ‘small’
ε (being therefore close to the total ignorance case
considered above): this gives N(E) = 0.5 + ε, Π (E) = 1
(and hence N (¬E) = 0, Π (¬E) = 0.5 − ε) with a large
discontinuity of N(E) (and of Π (¬E)).
This shows that even in the simple case of a single
event, translations between different theories may
involve some inherently problematic aspects and
unavoidable distortions.

4.2 Translating belief states about ℘℘(U)

We propose in this section some methods of translating
from LIF into the specific formats considered when the
exchanged information concerns all the non-trivial
events in ℘(U) and U ={e1, … , en}.

4.2.1 From imprecise to precise probabilities

Given a lower probability P on ℘(U), the consistency
principle requires that the precise probability P resulting
from translation is such that P(E) ≥ P(E), ∀ E ∈ ℘(U)
or equivalently, in terms of upper and lower probability,
that P(E) ≤ P(E)  ≤  P (E), ∀ E ∈℘(U).
A straightforward extension of the single event case

would lead to translating P into Pm(E)=(P(E) + P (E))/2
for all E, but in general Pm is not a coherent precise
probability. One way out is that of finding a precise
probability P* which is as close as possible to Pm in

some sense5. If this is meant as quadratic approximation,
we are lead to solve the following minimization
problem:

(6)    min ϕ = Σ E ∈ ℘(U) (P*(E) − Pm(E))2

subject to:

P(E) ≤ P*(E)  ∀ E ∈ ℘(U);  1)(*
1

=∑
=

n

i
ieP

Problem (6) minimizes a strictly convex function on a
convex set6 and therefore its solution (exists and) is
unique. Further, P* coincides with Pm whenever Pm is a
coherent precise probability. Operationally, problem (6)
may be solved with standard quadratic programming
techniques (see for instance [1]).

4.2.2 From imprecise probabilities to belief functions

To translate a lower probability P(⋅)  into a belief
function Bel(·) we apply (2) and (3) and determine Bel
through its Möbius inverse mB (also called mass
function) which, as well-known [11], is non negative,
normalized to 1 over all events in ℘(U) and such that

Bel(E) = ΣA ⇒ E mB(A).

This leads us to the following problem:
(7)    min ϕ = ΣE ∈℘(U) (P (E) − ΣA ⇒ E mB(A))
subject to:

Σ A ⇒ E mB(A) ≤  P (E),  mB(E) ≥ 0, ∀ E ∈ ℘(U);

ΣE ∈℘(U) mB(E)= 1.

The feasible region of this problem is always non-empty
(mB(E) = 0 ∀ E ≠ Ω, m(Ω) = 1  is a feasible point).

4.2.3 From imprecise probabilities to possibilities

Given an upper probability P (⋅) on ℘(U), a possibility
measure Π(⋅) which translates it should respect the
consistency constraint:

(8)    Π(E) ≥ P (E)  ∀ E ∈ ℘(U).

Applying also (3) we are lead to minimize

(9)    S = Σ E ∈℘(U) (Π(E) − P (E)).

However this request cannot be always fulfilled: for
instance, if P  is a precise probability P, U = {e1,e2},
and P(e1) = P(e2), it is natural to translate P into

                                                
5 Other solutions could be considered. The emphasis on
approaching Pm may be also motivated by the uses of Pm in a

decision theoretic framework [16].
6 By the coherence of the imprecise probability, the convex set
is not empty.



Π(e1) = Π(e2) = 1, which maximizes S. Here the
preference preservation principle is rather pursued: the
resulting possibility must not introduce differences
among events which are not given different upper (and
lower) probabilities.
We shall now propose a procedure which obeys (8) and
generalizes to imprecise probabilities what suggested for
precise probability → possibility transformations in [4].
The procedure works building up the possibility
distribution function π(⋅) of Π(⋅), which is equivalent to
assigning a possibility value Π(ei) to each atom ei ∈  U,
under the normality condition: ∃  ei : Π(ei) = 1. Then, as
well-known, Π(E) is given by:

(10)    Π(E) = maxei ⇒ E {Π(ei)}.

The procedure consists of the following steps:

1.a: ∀ ei ∈ M = {ei ∈ U: 1 −P (ei) < P(ei)},
put Π(ei) = 1;

1.b: If  M = ∅ then:
let  M* = {ei ∈ U: P (ei) = maxej ∈ U {P (ej )}},

and assign Π(ei) = 1 to any ei ∈ M* which

minimizes: P (ei) – P(ei).
2:   order the atoms of U which have not been assigned a

possibility value in step 1 by decreasing upper
probability; tied atoms (i.e. atoms having equal
upper probability) are ordered by decreasing lower
probability. Suppose for simplicity that the ordered
sequence is e1, … , em,  m < n, so that

P (e1) ≥ P (e2) ≥ …  ≥ P (em).
For i = 1, …,m, define Ai = ei ∨ ei+1 ∨…∨ em ;

put Π(ei) = P (Ai), unless it is P (ei) = P (ei+1) and
P(ei) = P(ei+1): in this latter case,

put Π(ei) = Π(ei+1) = P (Ai).

The motivation for step 1.a is analogous to the single

event case of 4.1: having to transform [P(ei), P (ei)] into
either [0, Π(ei)] or [N(ei), 1], the solution introducing as
little imprecision as possible is chosen. Step 1.b ensures
the normality condition, in case of ineffectiveness of
step 1.a. Step 2 gives to the remaining atoms (if any) as
little possibility as possible (with the exception of ties,
see below) while obeying condition (8), as it can be
easily seen using (10).
An interesting question is: to what extent does this
procedure tend to minimize the additional imprecision ?
Ties can be a first source of imprecision. Steps 1.b and 2
treat differently upper probability ties only if the
corresponding lower probabilities are not equal. The aim

is both to translate correctly cases like the one
mentioned after (9) and to limit the (usually large)
imprecision due to the translation into possibilities (for
instance, not differentiating two ties P (ei) = P (ei+1) in

1.b adds 2m-i+1·( P (Ai) – P (Ai+1)) to the transformation
imprecision). In other words, undifferentiated ties
increase imprecision, but it does not seem reasonable to
order strictly all ties.
Suppose now that no ties arise: then the procedure
introduces as little imprecision as possible at each step,
but still there may exist, subject to certain conditions,
alternative procedures which achieve a smaller S in (9).
This second source of imprecision is typical of
imprecise probability – possibility transformations. To
exemplify, consider the following proposition, whose
proof is not difficult and will be omitted.

Proposition. Let 1/2 > P (e1) > P (e2) >…  > P (em).
Consider two possibility measures Π1 and Π2, where Π1
is assigned applying the procedure described above:

(11)    Π1(ei) = P (Ai) , for i = 1, …,n;

Π2 is obtained exchanging the role of two contiguous

(with respect to the ordering induced by P ) atoms, eh,
eh+1 , in the procedure:

Π2(ei) = P (Ai) , for i = 1, …,h-1, h+2, …,n,

Π2(eh+1) = P (eh ∨ eh+1 ∨ Ah+2),

Π2(eh) =P (eh ∨ Ah+2).      Then it is:

(12)    S1 > S2 iff P (eh+1 ∨ Ah+2) > P (eh ∨ Ah+2).

This kind of situation cannot occur if P  is a precise
probability P: in fact, the condition in the right-hand
member of (12) is then always false, by the additivity of
P (and since P(eh+1) < P(eh)). On the other hand, if P  is
a (coherent) upper probability, it can be verified that the
condition in (12) is not vacuous. This is due to the
subadditivity of upper probabilities, which makes
‘preference inversions’ possible, in the sense that
conditions like the following may coexist:
P (E1) < P (E2) and P (E1 ∨  F) > P (E2 ∨  F).
Conditions similar to (12) can be obtained for more
complex alternative procedures, thereby suggesting that,
apart from ties, the procedure tends to minimize S, if P
does not differ too much from a precise probability (in
the sense that it does not allow inversions).

5 Conclusions

In this paper we addressed the problem of defining an
interchange format for uncertain information exchange



between distinct and independently developed software
components, such as agents in a multi-agent system. As
to our knowledge, this issue has received limited
attention in past years, in spite of its importance,
witnessed by the growing diffusion of multi-agent
applications.
Similar issues are raised in [18] [19], which stress the
importance of interoperability between heterogeneous
expert systems and considers the problem of defining
translation methods among different uncertainty
representation approaches. However this work deals
only with the uncertainty models used in the EMYCIN,
PROSPECTOR and MYCIN systems and does not
consider more general theories. Moreover it fails to
introduce the notion of a common interchange format
and therefore considers direct inter-formalism
transformation, which is disadvantageous in many
respects and in particular does not allow indirect
communication.
Some of the translation methods we consider might be
related to the approximation of non-additive measures
by k-additive measures proposed in [9]: this will be
explored in future work.
A related research direction concerns the definition of
general formalisms able to include various existing
theories as particular cases (see [10] [15] [17]). This is a
complementary area which might provide suggestions
for the definition of the interchange format, but leaves
the translation problem open.
Proposing an uncertainty interchange format is made
especially complex by the variety of existing uncertainty
theories and by the differences existing among them
both at semantic and syntactic level. The main questions
related to this problem have been analyzed and a
preliminary approach has been sketched. Thanks to its
ability to include several well-known theories as special
cases, imprecise probability theory has been identified as
a suitable basis for our proposal. We then examined the
issue of translation from imprecise probabilities into
precise probabilities, belief functions, and possibilities,
and defined the relevant transformation methods, which
generalize previous similar proposals in the literature,
where they exist. The proposed methods should be
regarded as a first useful result: we are currently
working on an extended version generalizing the
assumptions of sect. 3.1.
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