
On computing the maximum-entropy probability consistent
with a capacity

Pietro Baroni
Dip. Elettronica per l’Automazione

University of Brescia
Via Branze 38, I-25123 Brescia, Italy

baroni@ing.unibs.it

Paolo Vicig
Dip. Matematica Applicata “B. de Finetti”

University of Trieste
Piazzale Europa 1, I-34127 Trieste, Italy

paolo.vicig@econ.units.it

Abstract

The problem of computing the
maximum-entropy precise probabil-
ity consistent with a 2-monotone ca-
pacity is solved by an algorithm de-
vised by Jaffray. After reviewing
its properties, with particular refer-
ence to its applicability scope, we
introduce a modified version of the
algorithm, showing that it works
correctly on a strictly larger family
of capacities. Finally, an empirical
analysis about behavior and perfor-
mance of the proposed algorithm is
carried out.

Keywords: Capacities, Imprecise
probabilities, Maximum entropy.

1 Introduction

The problem of computing the maximum-
entropy probability consistent with a ca-
pacity attracts the interest of researchers
from several perspectives. Among them,
the maximum-entropy probability can be re-
garded as a “synthetic” representation of a
more general uncertainty assignment (e.g. a
belief function or an imprecise probability).
Further, the entropy value of this (precise)
probability was considered when measuring
uncertainty of an imprecise probability [1, 6].
An algorithm to solve this problem was first
devised in [8] for belief functions. The re-
sult was generalized by Jaffray who proposed
in [5] an algorithm, referred to as algorithm
J in this paper, to compute the maximum-
entropy precise probability consistent with a

2-monotone capacity. It has to be remarked
that, while the analysis carried out in [5] is
restricted to 2-monotone capacities, the ap-
plicability scope of algorithm J is actually
larger. This is probably the root of a recent
claim that the algorithm “which was proven
correct for belief functions theory, is appli-
cable without any change when belief func-
tions are replaced with arbitrary lower prob-
ability functions of any other kind” ([6], p.
327). Unfortunately this claim does not hold
in general (cf. [2, 3] or the later Example 1).
This paper aims at providing a twofold con-
tribution. First of all, we analyze in section 2
the applicability scope of algorithm J , point-
ing out that it actually works correctly on a
set of uncertainty assignments which strictly
includes 2-monotone capacities but does not
cover more general imprecise probabilities.
Then we introduce in section 3 a generalized
version of algorithm J , called algorithm G,
and analyze its properties in section 4, show-
ing that it works on a strictly larger family
of capacities. This result is complemented in
section 5 by an empirical analysis carried out
over a large number of randomly generated
imprecise probabilities and concerning the ap-
plicability scope and performances of the al-
gorithms. Section 6 concludes the paper.

2 Jaffray’s algorithm

Algorithm J receives in input an upper mea-
sure P (·) defined on the powerset 2Ω of a given
universal set Ω = {ω1, . . . , ωN} and produces
a precise probability PJ(·) on 2Ω. In [5], P
is submodular (or 2-alternating), namely such
that P (S1∪S2)+P (S1∩S2) ≤ P (S1)+P (S2),

∀S1, S2 ∈ 2Ω; this is equivalent to its conju-
gate P being supermodular (or 2-monotone).
Then PJ respects the consistency constraint:

∀S ∈ 2Ω, PJ(S) ≤ P (S) (1)

and is determined by a distribution pJ on the
atoms of Ω, constructed as follows.

Definition of algorithm J

Step 1. put AJ
0 = BJ

0 = ∅; k = 1;

BEGIN MAIN LOOP

Step 2. Determine AJ
k such that:

∅ �= AJ
k ⊆ (Ω \ BJ

k−1) and

P (BJ
k−1∪AJ

k)−P (BJ
k−1)

|AJ
k |

=

= min∅�=E⊆(Ω\BJ
k−1)

(
P (BJ

k−1∪E)−P (BJ
k−1)

|E|

)
;

Step 3. put BJ
k = BJ

k−1 ∪ AJ
k ;

put αJ
k =

P (BJ
k−1∪AJ

k)−P (BJ
k−1)

|AJ
k |

;

Step 4. ∀ω ∈ AJ
k put pJ(ω) = αJ

k ;

Step 5. if BJ
k = Ω then EXIT;

else put k = k + 1;

Step 6. goto Step 2;
END MAIN LOOP

In words, algorithm J identifies a sequence of
nested sets ∅ = BJ

0 � BJ
1 � . . . � BJ

K = Ω,
with K ≥ 1, by suitably selecting at each
main loop iteration a set AJ

k ⊆ (Ω \ BJ
k−1) to

be added to BJ
k−1 (therefore BJ

k \BJ
k−1 = AJ

k).
The selection criterion for AJ

k in Step 2 en-
sures that the probability values pJ are as-
signed in a way as uniform as allowed by the
consistency constraint (1). The choice of AJ

k is
nondeterministic when the minimum at Step
2 is attained by more than one set in some
iteration. Without any assumption on the
nondeterministic choices, it is proved in [5],
Proposition 2, that any probability PJ pro-
duced by algorithm J is an optimal solution
of a convex programming problem related to
entropy maximization. Since this problem ad-
mits a unique optimal solution, PJ is the same
for any nondeterministic choice.

Let us discuss the main properties of algo-
rithm J , proved in [5], from the perspective
of extension to more general capacities.

Properties of algorithm J

1. P (·) may be assumed to be strictly posi-
tive on 2Ω∗ � 2Ω \ {∅};

2. 0 < αJ
k ≤ αJ

k+1 for k = 1, . . . ,K − 1;

3. ∀S ∈ 2Ω, PJ (S) ≤ P (S);

4.
∑K

k=1 αJ
k |AJ

k | =
∑

ω∈Ω pJ(ω) = 1;

5. PJ(·) is the maximum entropy probabil-
ity consistent with P (S).

Property 1 is based on the fact that P is
zero-additive, i.e. ∀S1, S2 ∈ 2Ω, P (S1) =
P (S2) = 0 ⇒ P (S1 ∪ S2) = 0. This im-
plies that there is a largest set S ∈ 2Ω such
that P (S) = 0 (hence the restriction of P
to 2Ω \ S is considered in algorithm J). As
remarked in [5], submodular capacities are
zero-additive. Such are also the measures in
the (larger) family of coherent upper prob-
abilities [9], because of their nonnegativity
and sublinearity. Capacities outside this fam-
ily may or may not be zero-additive. Prop-
erty 2 depends only on Property 1 and the
definition of algorithm J , whilst Property 3
relies on submodularity of P and algorithm
J ’s definition, which entail that ∀S ∈ 2Ω,
PJ (S∩AJ

k) ≤ P (S∩BJ
k)−P (S∩BJ

k−1), for 1 ≤
k ≤ K. Then PJ (S) =

∑K
k=1 PJ(S ∩ AJ

k) ≤∑K
k=1

(
P (S ∩ BJ

k) − P (S ∩ BJ
k−1)

)
= P (S).

Property 4 derives from the definition of al-
gorithm J since BJ

K = Ω. The proof of Prop-
erty 5 in [5] relies on algorithm J definition
and Properties 2, 3, and 4, thus exploiting
submodularity of P only through Property
3. Turning now to more general uncertainty
measures, note first that the problem we are
discussing makes sense only when the set of
consistent precise probabilities is non-empty,
that is iff the capacity is an ASL (Avoiding
Sure Loss) imprecise probability [9]. The ASL
condition may be referred to either upper or
lower capacities, because of conjugacy. To
parallel Jaffray’s procedure, we consider up-
per capacities. Hence the uncertainty mea-
sures we are concerned with in the sequel, de-
noted with P , are ASL zero-additive upper
capacities defined on 2Ω (zero-additivity is re-
quired to ensure Property 1).

A crucial point is that Property 5 of algorithm
J is preserved also if P is not submodular,
provided that Property 3 still holds. We make
two remarks on this. First, submodularity is
a sufficient, but not necessary condition for
Property 3. For instance, it is easy to see
that when P dominates the uniform proba-
bility the procedure ends in one iteration, by
selecting AJ

1 = BJ
1 = Ω independently of any

other property of P . On the other hand, ex-
amples are known where Jaffray’s algorithm
produces a precise probability which is not
consistent with the given upper probability
[2, 3]. Let us see this.

Example 1 Let Ω = {a, b, c, d}, and P be
the coherent upper probability on 2Ω which is
the upper envelope of the two precise proba-
bilities P1, P2, determined by orderly assign-
ing the following values on the atoms a, b, c, d:
P1 - values [0.29, 0.34, 0.04, 0.33], P2 - values
[0.76, 0.11, 0.08, 0.05]. At the first main loop
iteration P (S)

|S| is evaluated for all S ∈ 2Ω∗
and the set S giving rise to the minimum
value, actually {c}, is selected as AJ

1 . Then

αJ
1 = P (AJ

1)

|AJ
1 |

= 0.08; pJ(c) = 0.08; BJ
1 = AJ

1 .

At the second iteration, P (S)−P (BJ
1)

|S\BJ
1 |

is evalu-

ated only for the proper supersets S of BJ
1 .

The minimum value of such a ratio, actu-
ally 0.29, is obtained for S = {c, d}. Then
AJ

2 = {d}; pJ(d) = αJ
2 = 0.29. Then the

supersets S of BJ
2 = {c, d} are considered:

min(P (S)−P (BJ
2)

|S\BJ
2 |

) is achieved for S = Ω. Then

AJ
3 = {a, b}; pJ(a) = pJ(b) = αJ

3 = 0.315,
and the algorithm terminates since BJ

3 = Ω.
However the probability PJ obtained by addi-
tivity from pJ is not consistent with P since
PJ({b, c}) = 0.395 > P ({b, c}) = 0.38. �

It is useful for the sequel to state a condition
which characterizes Property 3 referring to al-
gorithm J . Such a condition can be identified
by considering that, at the k-th iteration of
the algorithm, PJ is determined for all sets
S : S ⊆ BJ

k , S �⊂ BJ
k−1 and that for any such S

it holds PJ(S) = PJ(S∩BJ
k−1)+αJ

k |S \BJ
k−1|.

Now, requiring consistency of PJ is clearly
equivalent to imposing, for each iteration k,
that P (S) ≥ PJ (S) for all sets S whose PJ is
determined at iteration k. Therefore we have:

Proposition 1 Let PJ be a precise probabil-
ity produced applying algorithm J to P (·).
Then, PJ (S) ≤ P (S),∀S ∈ 2Ω if and only
if ∀k, 1 ≤ k ≤ K, ∀S ⊆ BJ

k , S �⊂ BJ
k−1:

P (S) − PJ(S ∩ BJ
k−1)

|S \ BJ
k−1|

≥ αJ
k (2)

where αJ
k =

P (BJ
k)−P (BJ

k−1)

|BJ
k \BJ

k−1|
.

As we will now see, condition (2) is the start-
ing point for generalizing algorithm J .

3 Generalizing Jaffray’s algorithm

Condition (2) provides a constraint on the sets
S �⊂ BJ

k−1, S ⊆ BJ
k for each iteration k. How-

ever Step 2 of algorithm J enforces (2) only
for the sets S such that BJ

k−1 � S ⊆ BJ
k .

Then, the produced result is correct if P is
such that (2) holds also for any set S such
that BJ

k−1 �⊆ S ⊆ BJ
k . In Example 1, this is

not the case for the set {b, c, e}.
On the basis of this observation it is possible
to devise a modified version of Jaffray’s algo-
rithm, which enforces the constraint on all the
sets. This generalized algorithm, called Algo-
rithm G, constructs a distribution pG(·) and
the relevant additive measure PG(·) as follows.

Definition of algorithm G

Step 1. put AG
0 = BG

0 = ∅;
put k = 1; PG(∅) = 0;

BEGIN MAIN LOOP

Step 2. Determine AG
k ∈ 2Ω such that:

AG
k �⊆ BG

k−1 and

P (AG
k)−PG(AG

k ∩BG
k−1)

|AG
k \BG

k−1|
=

= minE∈2Ω,E �⊆BG
k−1

(
P (E)−PG(E∩BG

k−1)

|E\BG
k−1|

)
;

Step 3. put BG
k = BG

k−1 ∪ AG
k ;

put αG
k =

P (AG
k)−PG(AG

k ∩BG
k−1)

|AG
k \BG

k−1|
;

Step 4. ∀ω ∈ (AG
k \ BG

k−1) put pG(ω) = αG
k ;

Step 5. if BG
k = Ω then EXIT;

else put k = k + 1;

Step 6. goto Step 2;
END MAIN LOOP

Also algorithm G operates on a sequence of
nested sets ∅ = BG

0 � BG
1 � . . . � BG

K = Ω,
with K ≥ 1, by properly selecting, at each
main loop iteration, a set AG

k to be added to
BG

k−1. The core difference with respect to al-
gorithm J is that AG

k is selected among all
the sets S �⊆ BG

k−1, while AJ
k ⊆ (Ω \ BJ

k−1)
in algorithm J . In other words, it may be
AG

k ∩BG
k−1 �= ∅, while AJ

k ∩BJ
k−1 = ∅. There-

fore a larger set of candidates for AG
k is con-

sidered and, as a side effect, not necessarily
BG

k \ BG
k−1 = AG

k , while BJ
k \ BJ

k−1 = AJ
k in

algorithm J , by construction. Consequently
the difference P (AG

k)−PG(AG
k ∩BG

k−1) replaces
P (BJ

k−1∪AJ
k)−P (BJ

k−1) and the denominator
is |AG

k \ BG
k−1| instead of |AJ

k |.
Note that Step 4 implies also that:

PG(S) = αG
k |S|,∀S ⊆ (AG

k \ BG
k−1). (3)

Further, using (3) with S = AG
k \BG

k−1 in the
definition of αG

k (Step 3), we obtain PG(AG
k \

BG
k−1) = P (AG

k)−PG(AG
k ∩BG

k−1), and hence

P (AG
k) = PG(AG

k),∀k (4)

To exemplify the difference between algo-
rithms G and J , consider again Example 1.
Clearly, the first main loop iteration is always
the same for the two algorithms. Therefore
AG

1 = {c}. Then αG
1 = 0.08; pG(c) = 0.08;

BG
1 = AG

1 . At the second iteration, ∀S �⊆
BG

1 , P (S)−PG(S∩BG
1)

|S\BG
1 | is evaluated. Note that

PG(S ∩BG
k−1) is already available at iteration

k, since pG has necessarily been assigned in
previous iteration(s) to all atoms ω ∈ BG

k−1
(one atom in the first iteration of our exam-
ple). It turns out that (again, as in algorithm
J) AG

2 = {c, d}, hence pG(d) = αG
2 = 0.29;

BG
2 = {c, d}.

In the next iteration, the difference between
algorithms becomes effective: the minimum
value for P (S)−PG(S∩BG

2)

|S\BG
2 | , actually 0.3, is ob-

tained for S = {b, c}, therefore AG
3 = {b, c};

AG
3 \ BG

2 = {b}; pJ(b) = αG
3 = 0.3; BG

3 =
{b, c, d}. Since only one atom remains to be
added, the fourth iteration is necessarily the
last one. For all sets S ⊇ {a}, P (S)−PG(S∩BG

3)
1

is evaluated: its minimum value 0.33 is at-
tained for S = Ω = {a, b, c, d}, completing
the pJ assignment with pJ(a) = 0.33.

Unlike algorithm J , the resulting probability
measure is consistent with P .

4 Properties of algorithm G

Algorithm G returns the same result as algo-
rithm J , for any P satisfying condition (2).
To prove this, we first show in Proposition
2 that any solution satisfying (2) produced
by algorithm J may also be obtained by al-
gorithm G, possibly through some nondeter-
ministic choice. Then, we will show in Propo-
sition 4 that algorithm G produces the same
solution for any nondeterministic choice.

Proposition 2 Let SJ(P) and SG(P) be the
sets of all {AJ

k}, {AG
k } sequences that can be

produced by applying, respectively, algorithms
J and G to P (·). If condition (2) holds for all
{AJ

k} ∈ SJ(P), then SJ(P) ⊆ SG(P).

Proof. For a given P , let AJ
0 , . . . , AJ

K be a
sequence in SJ(P): let us show that it also
belongs to SG(P). First note that, by defini-
tion, for any P it holds that AJ

0 = AG
0 = ∅ =

BJ
0 = BG

0 , and therefore also PJ(S ∩ BJ
0) =

PG(S ∩ BG
0), for any S ∈ 2Ω. Moreover

P (BG
0) = PG(BG

0) = 0.

Then, let inductively be, for k ≥ 1, AG
k−1 =

AJ
k−1; BG

k−1 = BJ
k−1; PG(BG

k−1) = P (BG
k−1);

PG(S ∩ BG
k−1) = PJ(S ∩ BJ

k−1), ∀S ∈ 2Ω.

We show that the inductive hypothesis and
condition (2) imply AG

k = AJ
k (and hence

BG
k = BJ

k ; αG
k = αJ

k ; PG(BG
k) = P (BG

k);
PG(S ∩ BG

k) = PJ (S ∩ BJ
k), ∀S ∈ 2Ω).

In fact, substituting PJ(S ∩ BJ
k−1) = PG(S ∩

BG
k−1) and BJ

k−1 = BG
k−1 in (2) and in the ra-

tio defining αJ
k we obtain:

rG
k (S) � P (S)−PG(S∩BG

k−1)

|S\BG
k−1|

≥ αJ
k =

P (BJ
k)−P (BG

k−1)

|BJ
k \BG

k−1|
,∀S ⊆ BJ

k , S �⊆ BJ
k−1.

Recalling P (BG
k−1) = PG(BG

k−1) and noting
that BG

k−1 = BJ
k−1 = (BJ

k ∩ BJ
k−1), this en-

tails: αJ
k =

P (BJ
k)−P (BJ

k ∩BG
k−1)

|BJ
k \BG

k−1|
= rG

k (BJ
k) ≤

rG
k (S),∀S ⊆ BJ

k , S �⊆ BJ
k−1.

Since αG
k = minS �⊆BG

k−1
rG
k (S), the above con-

dition guarantees that, at iteration k, the
set BJ

k is at least as preferred as any set
S ⊆ BJ

k , S �⊆ BJ
k−1 in the selection by algo-

rithm G. Let us now show that BJ
k is also pre-

ferred to any set T �⊆ BJ
k : this ensures that

BJ
k can be the actual (possibly nondetermin-

istic) choice of algorithm G at iteration k and
completes the proof.

For any set T �⊆ BJ
k there is an index m

such that T ⊆ BJ
m, T �⊆ BJ

m−1, with m > k.
Since condition (2) holds, PJ is consistent
with P and in particular P (T) ≥ PJ (T).
Then P (T)−PJ(T ∩BJ

k−1) ≥ PJ(T)−PJ(T ∩
BJ

k−1) =
∑m

i=k PJ(T∩AJ
i) =

∑m
i=k αJ

i |T∩AJ
i |.

Now, since αJ
i ≤ αJ

i+1 for any i (Property 2)
and

∑m
i=k |T ∩ AJ

i | = |T \ BJ
k−1| it holds that∑m

i=k αJ
i |T ∩ AJ

i | ≥ αJ
k |T \ BJ

k−1|.
Hence, P (T)−PJ (T ∩BJ

k−1) ≥ αJ
k |T \BJ

k−1|;
recalling BJ

k−1 = BG
k−1 and PJ (T ∩ BJ

k−1) =
PG(T ∩ BG

k−1), we obtain: ∀T �⊆ BJ
k ,

rG
k (BJ

k) = αJ
k ≤ P (T)−PG(T∩BG

k−1)

|T\BG
k−1|

= rG
k (T). �

Let us now investigate the properties of al-
gorithm G. We first verify that it satifies a
property exactly corresponding to Property 2.

Proposition 3 Let αG
1 , . . . , αG

K be a sequence
of values produced by algorithm G on P (·).
Then 0 < αG

k ≤ αG
k+1, for k = 1, . . . ,K − 1.

Proof. 0 < αG
1 derives from zero-additivity.

For k ≥ 1, consider now αG
k =

minE∈2Ω,E �⊆BG
k−1

P (E)−PG(E∩BG
k−1)

|E\BG
k−1|

.

We show by contradiction that αG
k+1 ≥ αG

k .
By (4), P (AG

k+1) = PG(AG
k+1) = PG(AG

k+1 ∩
BG

k) + PG(AG
k+1 \ BG

k).
Since (recalling BG

k−1 � BG
k) AG

k+1 ∩ BG
k =

(AG
k+1 ∩ BG

k−1) ∪ (AG
k+1 ∩ (BG

k \ BG
k−1)), and

any ω ∈ (AG
k+1 ∩ (BG

k \ BG
k−1)) is given the

value pG(ω) = αG
k , it is PG(AG

k+1 ∩ BG
k) =

PG(AG
k+1 ∩ BG

k−1) + αG
k |AG

k+1 ∩ (BG
k \ BG

k−1)|.
Moreover, PG(AG

k+1\BG
k) = αG

k+1|AG
k+1\ BG

k |,
by (3).

Assuming now αG
k+1 < αG

k , we have
P (AG

k+1) = PG(AG
k+1 ∩ BG

k−1) + αG
k |AG

k+1 ∩
(BG

k \BG
k−1)|+αG

k+1|AG
k+1 \ BG

k | < PG(AG
k+1∩

BG
k−1) + αG

k |AG
k+1 \ BG

k−1|. This implies
P (AG

k+1)−PG(AG
k+1∩BG

k−1)

|AG
k+1\BG

k−1|
< αG

k =

= minE∈2Ω,E �⊆BG
k−1

(
P (E)−PG(E∩BG

k−1)

|E\BG
k−1|

).

Contradiction. �

Using Proposition 3, it is possible to show that
Algorithm G produces the same PG indepen-
dently of the possibly nondeterministic selec-
tions of AG

k at Step 2, since the atoms of any
set A′ eligible at iteration k are in any case
assigned the same value αG

k as if A′ were the
actual selection at iteration k.

Proposition 4 Let AG
k be the set selected by

Algorithm G at iteration k. For any A′ �=
AG

k , A′ �⊆ BG
k−1 such that

P (A′)−PG(A′∩BG
k−1)

|A′\BG
k−1|

=

αG
k , it is pG(ω) = αG

k , ∀ω ∈ (A′ \ BG
k−1).

Proof. Define D′ = A′ \ BG
k−1 and D =

AG
k \ BG

k−1. By Step 4 of the algorithm,
∀ω ∈ D, pG(ω) = αG

k . Therefore the con-
clusion is immediate if D′ ⊆ D. If not,
A′ �⊆ BG

k , which means that A′ is consid-
ered as a candidate AG

k+1 in the (k + 1)-
th main loop iteration. In particular, using
|A′ \ BG

k | = |D′| − |D ∩ A′|, (3), and the hy-

pothesis it is: P (A′)−PG(A′∩BG
k)

|A′\BG
k | =

=
P (A′)−PG(A′∩BG

k−1)−αG
k |D∩A′|

|A′\BG
k | =

= αG
k |D′|−αG

k |D∩A′|
|A′\BG

k | = αG
k .

Since αG
k+1 ≥ αG

k (Proposition 3) and A′ is
a candidate for AG

k+1, it is then necessarily
αG

k+1 = αG
k . Now, if A′ is actually selected

as AG
k+1 or turns out to be included in BG

k+1,
the conclusion follows. Otherwise we can it-
erate the same argument in the subsequent
iterations. In summary, we obtain a sequence
1, . . . , p, p ≥ 1, such that A′ �⊆ BG

k+i, i < p,
A′ ⊆ BG

k+p, αG
k = αG

k+1 = . . . = αG
k+p. Hence

∀ω ∈ (D′ \ D), pG(ω) = αG
k . �

The following proposition ensures the satis-
faction of the consistency requirement.

Proposition 5 Let PG be the assignment on
2Ω produced by applying algorithm G to P (·).
Then ∀S ∈ 2Ω, PG(S) ≤ P (S).

Proof. There is an index k such that
S �⊆ BG

k−1, S ⊆ BG
k . Recalling that αG

k ≤
P (S)−PG(S∩BG

k−1)

|S\BG
k−1|

, we obtain (use (3) for the

first equality) P (S) ≥ αG
k |S \BG

k−1|+ PG(S ∩
BG

k−1) = PG(S \ BG
k−1) + PG(S ∩ BG

k−1) =
PG(S). �

Proposition 5 shows that, unlike algorithm
J , algorithm G always produces a consistent
assignment on 2Ω. There is however also a
downside: the result of algorithm J is always
a precise probability, while it may occur using
algorithm G that

∑
ω∈Ω pG(ω) < 1.

Example 2 Let Ω = {a, b, c, d, e, f}, and
P be the coherent upper probability on
2Ω which is the upper envelope of the
two precise probabilities P1, P2, determined
by orderly assigning the following values
on the atoms a, b, c, d, e, f : P1 - values
[0.59, 0.12, 0.01, 0.26, 0.01, 0.01], P2 - values
[0.44, 0.21, 0.18, 0.02, 0.03, 0.12]. At the first
main loop iteration the set {e} is selected

as AG
1 . Then αG

1 = P (AG
1)

|AG
1 | = pG(e) = 0.03

and BG
1 = AG

1 . At the second iteration, the
set {c, d, f} is selected as AG

2 . Then (since
AG

2 ∩ BG
1 = ∅) αG

2 = P ({c,d,f})
|{c,d,f}| = 0.106, and,

therefore, pG(c) = pG(d) = pG(f) = αG
2 ;

BG
2 = {c, d, e, f}. Third iteration: AG

3 =
{b, d, e, f}, αG

3 = P ({b,d,e,f})−PG({d,e,f})
|{b}| =

0.156; pG(b) = αG
3 ; BG

3 = {b, c, d, e, f}.
Fourth iteration: AG

4 = {a, e, f}; αG
4 =

P ({a,e,f})−PG({e,f})
|{a}| = 0.473 and pG(a) = αG

3 .
Since BG

4 = Ω, the algorithm terminates. Un-
fortunately,

∑
ω∈Ω pG(ω) = 0.98. �

We show now that algorithm G produces a
precise probability if and only if Ω is selected
(or is among the possible non deterministic
choices) at the algorithm last iteration.

Proposition 6 Let AG
1 , . . . , AG

K be a se-
quence of sets obtained by applying algorithm
G on P (·), and pG(·) the relevant distribution
on Ω. Then

∑
ω∈Ω pG(ω) = 1 iff

αG
K =

P (Ω) − PG(Ω ∩ BG
K−1)

|Ω \ BG
K−1|

. (5)

Proof. Of course
∑

ω∈Ω pG(ω) = 1 ⇔
PG(Ω) = 1. Let us first note that if (5)

holds, we can assume AG
K = Ω by Proposition

4. Then PG(Ω) = P (Ω) = 1, by (4). Con-
versely, assume PG(Ω) = P (Ω) = 1. Then
(5) follows replacing PG(Ω) with P (Ω) into
PG(Ω) = αG

K |Ω \ BG
K−1| + PG(Ω ∩ BG

K−1). �

In the frame of the empirical analysis de-
scribed in Section 5, we verified on randomly
generated imprecise probabilities that condi-
tion (5) is not particularly restrictive. The
percentage of cases where it holds is quite high
and slightly decreases with the cardinality of
Ω: for instance, it is about 99.7 for |Ω| = 6,
99.1 for |Ω| = 8, and 98.4 for |Ω| = 10.

As for the optimality of PG, checking it can
be reduced to checking the compatibility of
a standard linear programming problem. Ac-
tually, PG is the maximum entropy probabil-
ity consistent with P iff pG(ω1), . . . , pG(ωN)
solves the following constrained minimization
problem for the opposite of the entropy func-
tion H(PG) = −∑N

i=1 pG(ωi)log2pG(ωi) :

min
N∑

i=1

pG(ωi)log2pG(ωi)

∑
ωi∈S

pG(ωi) ≤ P (S),∀S ∈ 2Ω
∗ ;

−pG(ωi) ≤ 0,∀ωi ∈ Ω;
N∑

i=1

pG(ωi) = 1.

As also discussed in [5], thanks to the proper-
ties of the objective function, Karush-Kuhn-
Tucker necessary and sufficient conditions
(see [4] Chap. 4) ensure that p̂G is an op-
timal solution iff there exist real values ρωi

(ωi ∈ Ω), λS (S ∈ 2Ω∗), and µ such that:

ρωi ≥ 0,∀ωi ∈ Ω;λS ≥ 0,∀S ∈ 2Ω
∗ ; (6)

−K(ωi) +
∑

S:ωi∈S

λS + µ − ρωi = 0,∀ωi ∈ Ω;

(7)

λS(
∑

S:ωi∈S

p̂G(ωi) − P (S)) = 0,∀S ∈ 2Ω
∗ ; (8)

ρωi p̂G(ωi) = 0,∀ωi ∈ Ω; (9)

where K(ωi) = −1 − log2p̂G(ωi).

By Proposition 3, p̂G(ωi) > 0, therefore (9)
holds iff ρωi = 0,∀i. From (8), λS = 0,
∀S : P̂G(S) < P (S), i.e. λS may be non zero

only for those S such that P̂G(S) = P (S).
This equality holds at least for S ∈ A =
{AG

1 , . . . , AG
K}, by (4). Putting A∗(⊇ A) =

{S : P̂G(S) = P (S)}, and λS = 0, ∀S /∈ A∗,
conditions (6)-(9) simplify as follows:

λS ≥ 0,∀S ∈ A∗ (10)∑
S∈A∗:ωi∈S

λS + µ = K(ωi),∀ωi ∈ Ω (11)

Checking the optimality of p̂G(·) amounts
therefore to verifying whether the linear sys-
tem (10)-(11) is compatible, a task for which
well known procedures are available.

Finally, we carried out a complexity compar-
ison between algorithms J and G. Due to
space limitations, we only state without proof
that the worst case orders of magnitude of the
total number of operations are, respectively,
2 · 2|Ω| (algorithm J) and (|Ω| − 1) · 2|Ω| (algo-
rithm G).

5 An empirical analysis

We have shown that algorithm J works cor-
rectly on a family of upper capacities J , char-
acterized by condition (2), which is a strict
superset of the set S of submodular upper
capacities and that algorithm G works on a
still larger family G � J , indirectly charac-
terized by condition (5) and the linear sys-
tem (10)-(11). One may now wonder whether
this achievement may have some practical rel-
evance. To answer this, two kinds of tests
can be carried out: on one hand, it has to
be checked whether the improvement with re-
spect to algorithm J is significant, on the
other hand, since maximum entropy can also
be computed by resorting to nonlinear pro-
gramming, the use of algorithm G has to be
justified with respect to this alternative. Tests
were focused on coherent upper probabilities
[9], a very general family of uncertainty mea-
sures whose practical relevance is widely ac-
knowledged. We wrote a set of Java classes
whose features include the random genera-
tion of coherent upper probabilities, the im-
plementation of algorithms J and G, and the
capability to use the Java API of the Lindo [7]
package for linear and nonlinear programming
tasks.

To compare algorithms J and G, we wrote a
program whose main loop randomly generates
a coherent upper probability P and verifies
whether P belongs to each of the sets S,J ,G.

The program was run for |Ω| = 4, . . . , 10
and generated 100000 imprecise probabilities
for each cardinality1. Two main observations
emerge from the results shown in Table 1.

Table 1: Percentage of coherent upper proba-
bilities belonging to the families: S,J ,G

|Ω| S J G
4 13.1 96.7 97.7
5 2.87 84.1 87.0
6 1.79 61.8 68.2
7 1.35 39.3 48.1
8 1.11 24.1 32.6
9 0.97 15.1 21.8
10 0.86 10.7 15.4

On one hand, while, as pointed out in [2], fam-
ily S becomes very small for |Ω| ≥ 5, family
J is definitely larger, though significantly de-
creasing with increasing cardinality. On the
other hand, algorithm G provides the correct
solution in a moderately but not negligibly
larger number of cases than algorithm J .

Turning to the comparison with a state-of-
the-art general nonlinear programming solver,
algorithm G was first compared with Lindo
NLP module in terms of computation times.
Results of this comparison have to be taken
very cautiously for two main reasons. First,
due to the limitations of Lindo trial ver-
sion, they could be carried out only when
|Ω| = 4, . . . , 7. Second, the performances of
the experimental Java implementation of al-
gorithm G we used are strongly affected by
the overhead of Java Virtual Machine, espe-
cially with increasing cardinality. Table 2
shows, for each cardinality, the average ratio
AR between the computation times of Lindo
and of algorithm G (including check of op-
timality of the computed solution). In ev-
ery case algorithm G is several times faster
than Lindo. Finally we evaluated the differ-
ence between the solutions produced by al-
gorithm G, when they are non-optimal pre-

1Any coherent upper probability defined on 2Ω

with |Ω| ≤ 3 is submodular.

Table 2: Ratio between average computation
time of Lindo and of algorithm G

|Ω| 4 5 6 7
AR 12.8 8.89 6.46 4.58

cise probabilities, and Lindo’s optimal ones,
in order to verify whether algorithm G can be
considered a suitable approximate algorithm
when it does not produce the optimal solu-
tion. For |Ω| = 4, . . . , 7 we randomly gener-
ated 100000 cases where PG is different from
the optimal solution P ∗. For each case i, we
computed the difference between entropy val-
ues DEi = H(P ∗

i) − H(PGi) and the percent
error DE%i = (DEi/H(P ∗

i)) · 100. Table
3 displays the values MDE = maxi(DEi),
ADE =

P
i DEi

100000 , MDE% = maxi(DE%i),

and ADE% =
P

i DE%i

100000 . While, on the av-
erage, the approximation is quite good, the
worst case error is relatively high.

Table 3: Evaluation of the non-optimal solu-
tions produced by algorithm G

|Ω| MDE ADE MDE% ADE%
4 0.082 0.010 10.2 0.69
5 0.185 0.0094 19.3 0.52
6 0.247 0.0093 14.0 0.45
7 0.261 0.0094 17.6 0.43

6 Conclusions

We provided a generalization of Jaffray’s al-
gorithm able to compute the maximum en-
tropy probability on a family of capacities
larger than the one where the original algo-
rithm works correctly. We proved that when-
ever the solution PJ of algorithm J is cor-
rect, algorithm G returns the same solution
PG = PJ . In general, PJ is not consistent,
but if it is so, it is also optimal. Algorithm G
guarantees consistency, but PG is not always
a probability, in certain situations which we
operationally characterized and which empir-
ical evidence shows to be rather infrequent.
Outside such situations, optimality of PG can
be checked via linear programming, and an
empirical analysis shows that algorithm G is
quicker than a standard non linear program-

ming solver and often at least near-optimal.
Among future research directions we mention
devising algorithms for partially specified im-
precise probabilities. A step in this direction
is the algorithm proposed in [1] for probability
intervals, i.e. imprecise probabilities assessed
on elementary events only.

Acknowledgements

We thank the referees for their helpful com-
ments.

References

[1] J. Abellan, S. Moral, Maximum of en-
tropy for credal sets, Int. J. of Uncer-
tainty, Fuzziness and Knowledge-Based
Systems, 11 (2003) 587–597.

[2] P. Baroni and P. Vicig, Transformations
from imprecise to precise probabilities,
Proc. of ECSQARU 2003, (Aalborg, DK,
2003) 37–49.

[3] P. Baroni and P. Vicig, An uncertainty
interchange format with imprecise prob-
abilities, Int. J. of Approximate Reason-
ing , 40 (2005) 147–180.

[4] M. S. Bazaraa, H. D. Sherali, C. M.
Shetty, Nonlinear Programming, 2nd ed.,
Wiley (New York, 1993).

[5] J.-Y. Jaffray, On the maximum-entropy
probability which is consistent with
a convex capacity, Int. J. of Uncer-
tainty, Fuzziness and Knowledge-Based
Systems, 3 (1995) 27–33.

[6] G. J. Klir, An update on generalized in-
formation theory, Proc. of ISIPTA 03 ,
(Lugano, CH, 2003) 321–334.

[7] Lindo API 4.0 optimization engine, avail-
able at: http://www.lindo.com

[8] A. Meyerowitz, F. Richman, E. Walker,
Calculating maximum-entropy probabil-
ity densities for belief functions, Int. J. of
Uncertainty, Fuzziness and Knowledge-
Based Systems, 2 (1994) 377–389.

[9] P. Walley, Statistical Reasoning with Im-
precise Probabilities, Chapman and Hall
(London, 1991).

