
Argumentation in Multi-agent Systems:
Self-stabilizing Defeat Status Computation

Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida
Universit̀a di Brescia

Dipartimento di Elettronica per l’Automazione
Via Branze 38, I-25123 Brescia, Italy

email: fbaroni, giacomin, guidag@ing.unibs.it

Abstract. In this paper, we consider a multi-agent system where agents perform ar-
gumentation activity on the basis of knowledge both stated in their knowledge-bases
and acquired from other agents. Starting from a previous proposal, we introduce a
distributed approach to argumentation, removing some limiting assumptions, and we
show by means of an example that the system can not be guaranteed to reach a state
which satisfy a well-founded semantics, and not even to terminate. In order to tackle
this problem, we devise two self-stabilizing algorithms for the computation of the de-
feat status, one specifically tailored to rebutting defeat, and the other able to deal with
any form of defeat.

1 Introduction

Argumentation is a framework for defeasible reasoning, where reasoning activity is modeled
as the process of constructing arguments for propositions from a given set of premises, by
chaining rules of inference, which may represent just provisional reasons for their conclu-
sions. Since different arguments may contradict each other, the core problem is the compu-
tation of thedefeat status, namely determining which arguments emerge undefeated from
the conflict and which conclusions should be believed. A key feature of this framework is
the capability not only of suppressing a previously derived conclusion if a counterargument
emerges, but also of reinstating it in case the counterargument is in turn defeated by further
information acquired subsequently.

The role of argumentation as a key form of interaction among autonomous agents has
been explicitely recognized in the multi-agent systems literature [14, 8]. For instance, argu-
mentation has been proposed as the basic mechanism by which autonomous agents achieve
a sophisticated form ofnegotiation[9, 7], i.e. they try to reach an agreement on some matter
through communication. The capability of negotiating is essential when agents are assumed
to be fully autonomous. In this case, each agent acquires (generally partial) information about
the world, has its own goals and produces plans to achieve them. As a consequence, exchang-
ing information is useful both to exploit knowledge of other agents about the world, possibly
dealing with inconsistencies among different agents’ views, and to achieve goals in coopera-
tion, by exchanging resources and adjusting conflicting objectives. Argumentation seems to
be appropriate for both kinds of tasks, since it offers a flexible and efficient reasoning frame-
work both at theepistemological level, i.e. reasoning about what to believe (e.g. in [10, 3]),
and at thepractical level, i.e. reasoning about what to do [12, 9].

An influential approach to argumentation in a multi-agent environment has recently been
proposed by Parsons and coauthors [9]. While this proposal is focused on argumentation-
based negotiation about goals to be achieved, in this paper we consider, more generally, the
process by which different agents exchange beliefs and construct arguments in a context
which is not limited to goal negotiation. To this purpose, we remove some assumptions intro-
duced in [9], which may represent limitations in many practical contexts. In particular:

� In [9], the defeat status of arguments is computed according to a semantics based on the
acceptability classes: if an argument� has a counter-argument�, it is not considered
as justified even if additional information invalidates�. Since reinstatement is a desir-
able feature of non-monotonic reasoning, we adopt here thegrounded semantics, which
includes reinstatement of arguments and is generally adopted in those argumentation sys-
tems proposed in the literature which enforce the so-called “single status approach” [13].

� While in [9] only two agents are explicitly considered, here we don’t make any assump-
tion about the numbers of involved agents.

� The argumentation model of [9] assumes that agents always exchange complete argu-
ments, i.e. that each piece of information is communicated along with its justification.
However, this assumption might be a severe limitation in all those contexts where agents
do not always communicate all the reasons supporting a conclusion, either for efficiency
purpose (the informed agent might be interested in the truth-value of a proposition only,
while trusting the informer agent about the existence of a valid argument), or for privacy
purpose (the informer agent might not be willing or allowed to disclose the justifications
behind a conclusion).

The aim of this paper is to overcome these limitations by considering a multi-agent sys-
tem where agents exchange information about the truth-value of propositions, and construct
arguments on the basis of knowledge both stated in their knowledge bases (possibly updated
by perceptual activities) and acquired from other agents. Moreover, in our model we don’t
assume any form of centralized control, nor the presence of a specific agent in charge of co-
ordinating the activity of the others, and we don’t commit to any kind of synchronism: every
agent performs argumentation autonomously, revising its conclusions independently of the
other ones and communicating information about its beliefs concerning specific aspects of
the world in response to local requests.

2 The problem of stabilization in distributed argumentation

In the distributed model of argumentation outlined in the previous section, an important issue
concerns the coordination of the autonomous activities of individual agents, that determine
the behavior of the overall system.

In order to analyze this problem, let us consider a simple example, which corresponds to
an extended version of the “paradox of the liar” taken from [11] and adapted to a distributed
context. Let us consider three agentsA1, A2 andA3, and let us suppose thatA1 is interested
in knowing whether a certain agent, say Smith, is reliable (for instance, because it wants to
exploit an information communicated by Smith). Let us suppose thatA1 has in its knowledge
base KB1 the propositionp1 = “John told me that Smith is unreliable”:A1 can therefore
construct the argumentp1) p2 for the conclusionp2 = “Smith is unreliable”. Now, suppose

p2

p1

p4

p3

p6

p5

Figure 1: Inference graph of the liar paradox example.

that A1, in order to verify this argument, asks other agents about the reliability of John,
andA2, whose knowledge base includesp3 = “Robertson told me that John is unreliable”,
constructs the argumentp3) p4 for the conclusionp4 = “John is unreliable”. As soon as
A1 receives information aboutp4, it revises its conclusion about Smith, who is then believed
reliable. Now, similarly,A2 acquires information about Robertson from agentA3, whose
knowledge base is supposed to includep5 = “Smith told me that Robertson is unreliable”. As
a consequence, on the basis of the argumentp5) p6 with p6 = “Robertson is unreliable”,A3

communicatesp6 to A2, which revises its conclusion about John and communicates in turn
this revision toA1: now the latter has no reason to invalidate its argument about Smith, who
is then believed byA1 to be unreliable. Then, ifA3 asksA1 information about Smith, it will
revise again its belief about Robertson, yielding again a revision of the arguments ofA2 and
A1; but this changes the belief ofA1 about Smith, yielding again a revision of the arguments.
It can be easily seen that, in this situation, the system will never reach a stable state, but each
agent will continue to revise the truth-value of its conclusion.

The example described above can be modeled as in Figure 1, where double arrows) rep-
resent inferential steps while simple arrows! denote a relation of attack between arguments.
This representation corresponds to the so-calledinference graphintroduced in [10]:

Definition 1. An inference graph is a tripleIG = hVI ; RI ; RDIi where:

� VI are the arguments produced (identified with their conclusions);

� RI are theinference edges, i.e.RI = fh�i; �ji 2 VI � VI : �i 2 IMM (�j)g (where for
each� 2 VI, IMM (�) is the set of premises from which� has been inferred by means of
an inference rule);

� RDI are thedefeat edges, i.e.RDI = fh�i; �ji 2 VI � VI : concl(�i) attacks�jg, where
the relation of ‘attack’ depends on the semantics of the language at hand.

Given an argument� 2 VI , the set of itssubarguments, denoted as sub(�), is identified
with the set of inference-ancestors of� , i.e. sub(�) = � [

S
�2IMM (�) fsub(�)g.

In our model, different agents perform inferential activity and defeat status computation
independently of each other. Moreover, as far as the distribution of arguments is concerned,
we assume that each process puts forward exactly one argument (therefore it can be identi-
fied with a node of the inference graph), and computes its defeat status by acquiring from
other processes information about the status assignment of its defeaters. Finally, we claim
that the defeat status assignment to the whole set of arguments, which emerges from the
autonomous choices of single processes that exploit local information, has to satisfy a well-
founded semantics of argumentation, i.e. it must be the one which would be computed by a
sound centralized algorithm exploiting global information. However, since we do not assume

any kind of synchronism, different processes may start their computation at different times,
therefore the initial state of the system cannot be determined in advance. Moreover, processes
can be added or removed dynamically, corresponding to the addition of arguments (inferen-
tial activity) and the addition or removal of premises (perceptual activity), and the system has
to react in such a way that a new correct status assignment is reached in a finite amount of
time.

In the following section we introduce algorithms for defeat status computation that can
guarantee that a distributed argumentation system isself-stabilizing, i.e. a network of pro-
cesses which, when started from an arbitrary (and possibly illegal) initial state, always returns
to a legal state in a finite number of steps [4].

3 Self-stabilizing algorithms

In [2, 1] we have shown the feasibility of distributed argumentation by considering a different
kind of representation, calleddefeat graph, where nodes denote arguments and inference-
edges are not explicitely represented. In particular, we have devised two self-stabilizing al-
gorithms for defeat status computation, one specifically tailored torebutting defeat[10] (i.e.
where the attack arises only from contradicting conclusions) and the other able to deal also
with undercutting defeat[10] (i.e. where arguments attack the applicability condition of a
defeasible rule). In this paper, we extend our previous results to the inference graph represen-
tation: this allows us to model the relationship between an argument and the subarguments
it is derived from, and in particular argumentation activity performed by an agent exploiting
information acquired from other agents.

In order to introduce the semantics of the underlying argumentation framework, we have
to define the relation ofdefeatbetween arguments (identified with nodes of the inference
graph).

Definition 2. Given an inference graphIG = hVI ; RI; RDIi, an argument� 2 VI defeats
another argument� 2 VI iff there is a subargument� of � such that� attacks� , i.e.h�; � i 2
RDI .

We adopt asingle status approachto the argumentation semantics [13], i.e. the defeat
status of the arguments is defined in such a way that there is always exactly one possible
way to assign them a status. In a distributed environment, this seems to be more viable than
a multiple status approach, since it might be difficult for several asynchronous processes to
consider different global status assignments and subsequently to evaluate the justification of
their arguments on that basis. More specifically, we adopt thegrounded semanticsintroduced
in [5], which partitions the nodes (i.e. the arguments) into three classes:

� undefeated (UNDEF), namely justified;

� defeated (DEF), namely not justified;

� provisionally defeated (PROV), denoting a controversial situation, as in the case in which
there are two equally believable counterarguments, so that neither of them should be
justified (in the liar paradox example presented above, all the three arguments should be
provisionally defeated).

We define the grounded semantics inductively following Pollock’s approach [10], by in-
troducing the notion of level:

Definition 3. Given an inference graphIG = hVI ; RI ; RDIi,

� All arguments ofVI are in at level0.

� An argument ofVI is in at leveln+ 1 iff it is not defeated by any argumentin at leveln.

Definition 4. Given an inference graphIG = hVI ; RI ; RDIi, the defeat status of the argu-
ments ofVI is defined as follows:

� An argument isundefeatediff there is a levelm such that for everyn � m, the argument
is in at leveln.

� An argument isdefeatediff there is a levelm such that for everyn � m, the argument is
out at leveln.

� An argument isprovisionally defeatediff there is no levelm such that the argument isin
at all higher levels oroutat all higher levels.

3.1 The case of rebutting defeat

In this subsection, we describe a distributed self-stabilizing algorithm which can handle only
the case of rebutting defeat.

We assume that each argument� has a strength value, denoted as strength(�), which rep-
resents the conclusive force of the argument and is computed on the basis of strength values
associated to the rules of inference and premises used in its construction. In this respect, we
do not commit to any particular criterion for the computation of the strength of arguments,
we only assume that any argument cannot be strictly stronger that any of its subarguments:

8� 2 sub(�); strength(�) � strength(�) (1)

This condition, corresponding to one of the three axioms on strength introduced in [15], is
sufficiently general to ensure that no interesting distribution of strength is excluded before-
hand. The strength of the arguments plays a role in the determination of the attack relation
between arguments, namely in an inference graphIG = hVI; RI ; RDIi we have that

RDI = fh�i; �ji 2 VI � VI : concl(�i) = :concl(�j) ^ strength(�i) � strength(�j)g (2)

Conditions 1 and 2 entail specific topological properties of the inference graph that can
be exploited in the definition of the algorithm.

Let us introduce two preliminary definitions. Given a node� of an inference graphIG =
hVI ; RI; RDIi, the set of itsdirect-defeatersis denoted as

d-parents(�) = f� j (�; �) 2 RDIg

Given an inference graphIG the strongly connected componentsof IG are the equiva-
lence classes of vertices under the relation of path-equivalence, where two nodes are path-
equivalent if it is possible to reach each other by means of a path made up of inference and/or
defeat edges. By definition a node is path-equivalent to itself, therefore any node� 2 VI
belongs to a strongly connected component, denoted as SCC(�).

The following lemma follows (proof is omitted due to space limitation):

� If 9� 2 IMM (�) : s[�] = DEF then s[�] := DEF

� If 9� 2 IMM (�) : s[�] = PROV and8
 2 IMM (�) s[
] 6= DEF then

s[�] :=

�
DEF if 9� 2 superiors(�) : s[�] = UNDEF
PROV otherwise

� If IMM (�) = ; or 8� 2 IMM (�) s[�] = UNDEF then

– If 9� 2 superiors(�) : s[�] = UNDEF then s[�] := DEF

– If 9� 2 superiors(�) : s[�] = PROV and8
 2 superiors(�) s[
] 6= UNDEF then
s[�] := PROV

– If 8
 2 superiors(�) s[
] = DEF or superiors(�) = ; then

s[�] :=

�
UNDEF if 8
 2 contenders(�) s[
] = DEF
PROV otherwise

Figure 2: The self-stabilizing algorithm to deal with rebutting defeat.

Lemma 1. Given an inference graphIG = hVI ; RI ; RDIi, and given�; � 2 VI such that
� 2 SCC(�), if h�; �i 2 RDI then alsoh�; �i 2 RDI .

The basis of the algorithm is as follows. Given a node�, its direct defeaters can be parti-
tioned in two sets, namely superiors(�), whose elements have a strength strictly greater than
�, and contenders(�), whose elements have the same strength as� and therefore are attacked
by � in turn. Starting from an arbitrary initial state, each node� continuously monitors the
assignments of its defeaters and of its sub-arguments, and every time� detects a change, it
updates its defeat status according to the rules shown in Figure 2.

The correctness proof of this algorithm is organized in two parts. First, we prove the so-
called partial correctness, i.e. that if the algorithm terminates then the resulting global defeat
status assignment is correct.

Proposition 1. Given an inference graph, a defeat status assignment which satisfies the rules
of Figure 2 is unique and satisfies Definition 4.

Proof. (Sketch.) In [2, 6], we have proved that the same result holds for a defeat status
assignment of the so-calleddefeat graph, provided that a certain set of conditions, called
supercoherence conditions, are satisfied. The defeat graph has the same nodes as the inference
graph, but it has just one kind of edges, denoting the relation of defeat between arguments.
Now, it can be proved that if the considered status assignment satisfies the rules of Figure 2,
then it also satisfies the supercoherence conditions with reference to the defeat graph. As a
consequence, taking into account the result concerning the defeat graph, the thesis follows
immediately.

Then, taking into account Lemma 1, we prove termination of the algorithm (in the follow-
ing, proofs will be omitted due to space limitation). Given a strongly connected componentS,
we denote as parents�(S) the set parents�(S) = f� j � =2 S^9� 2 S : h�; �i 2 (RI[RDI)g.

Proposition 2. Given an inference graphIG and one of its strongly connected components
S, if 8
 2 parents�(S)
 is stable (i.e. it does not change its state any more) then all the
nodes ofS become stable in a finite amount of time.

The correctness of the algorithm easily follows from the above propositions. In fact, con-
sidering the strongly connected components of an inference graph as single nodes, the ob-
tained graph is acyclic. As a consequence, termination of the algorithm easily follows by in-
ductive application of Proposition 2. Moreover, in the termination state, where each process
does not update its state any more, all the conditions of Figure 2 are satisfied, therefore by
Proposition 1 the global status assignment is the one prescribed by the grounded semantics.

3.2 The General Case

In the approach proposed in the previous subsection, defeaters attack other arguments by
denying their (possibly intermediate) conclusions (rebutting defeaters). However, there is an-
other class of defeaters, namely those which prevent the acceptance of other arguments by
attacking the connection between premises and conclusion of a defeasible rule used by them
(undercutting defeaters). For instance, in the example presented in Section 2 arguments attack
the applicability condition of rules of inference of the kind ‘X tells Y) Y’, without denying
their conclusions. In fact, if a witness assertsY we have a defeasible reason to believeY . If
the witness turns out to be unreliable the reason to believeY is invalidated, even if we have
not a reason supporting:Y .

Undercutting defeaters invalidate the constraints on the topology of the inference graph
discussed above, and this prevents the algorithm presented in Section 3.1 to work: the right
status assignment is not always enforced, and the system is not even stable, i.e. there are initial
states and particular process scheduling decisions, that prevent computation to terminate. It
is easy to verify that this happens in the example considered in Section 2.

In order to enforce a correct behavior even in case of generic inference graphs, an ad-
ditional variable d[�] is introduced for every node�, whose domain is the set of natural
numbers. The variable d[�] is meaningful only when status[�] is either DEF or UNDEF. The
state of� is therefore identified by variables status[�] 2 fDEF;UNDEF;PROVg and d[�],
and for the sake of brevity will be indicated as s[�] = DEF(x) j UNDEF(x) j PROV, where
x is the value of d[�]. The algorithm is presented in Figure 3, whereN � 0 is a constant and
the following notations are used:

DIMM (�) = f� 2 IMM (�) j status[�] = DEFg
UIMM (�) = f� 2 IMM (�) j status[�] = UNDEFg
DDIR(�) = f� 2 d-parents(�) j status[�] = DEFg
UDIR(�) = f� 2 d-parents(�) j status[�] = UNDEFg
DISTU (�) =

S
�2UIMM (�)fd [�]g [

S
�2DDIR(�)fd [�] + 1g

DISTD(�) =
S

�2DIMM (�)fd [�]g [
S

�2UDIR(�)fd [�] + 1g

EXUNDEF (�) =

�
TRUE if DIMM (�) 6= ; orUDIR(�) 6= ;

FALSE otherwise

EXPROV (�) =

�
TRUE if 9� 2 (IMM (�) [d-parents(�)) : status[�] = PROV
FALSE otherwise

� If EXUNDEF (�) then

s[�] :=

�
DEF(minDISTD(�)) if minDISTD(�) � N
PROV otherwise

� If :EXUNDEF (�) andEXPROV (�) then s[�] := PROV

� If :EXUNDEF (�) and:EXPROV (�) then

s[�] :=

�
UNDEF(maxDISTU (�)) if maxDISTU (�) � N
PROV otherwise

Figure 3: The general self-stabilizing algorithm.

The underlying idea is the following. If an argument� is defeated in the right status,
according to Definition 4 there is a levelk at which it becomes stably out, i.e.� is in at level
k � 1 andout at all levelsm � k. In this case, it can be proved that� has at least a defeater
�, denoted as determinant node for�, which becomes stably in at levelk � 1: in a sense,
� is the cause for� being defeated. In case an argument� is undefeated, by Definition 4
either it has no defeaters, or it becomes stably in at a levelk > 0. In the latter case, it can
be proved that all the defeaters of� become stably out at lower thank levels, and there is a
defeater� which becomes stably out at levelk � 1: again,� is the determinant node for�.
Basically, the algorithm works as follows: each node� updates its defeat status according to
simple conditions entailed by Definition 4, and it updates d[�] to the proper value d[�] + 1,
where� is the node which� recognizes as its determinant node. The constantN represents
the maximum level at which a generic node can become stably in or stably out, and plays
a role when a node has to be provisionally defeated in the termination state: basically, if
d [�] + 1 > N , then� updates its state to PROV.

Also in this case, the correctness proof is organized in two parts.

Proposition 3. Let IG be an inference graphIG = hVI ; RI ; RDIi, and lets be a status
assignments : VI ! fDEF(x) j UNDEF(x) j PROVg satisfying the rules of Figure 3. For
each� 2 VI , if � becomes stably in (out) at a levelm � N then status[�] is UNDEF (DEF),
otherwise status[�] = PROV.

Proof. (Sketch.)The proof can be obtained in a similar way as the one of Proposition 1, tak-
ing into account that an analogous result has been proved in [1] for a certain set of conditions
holding for the defeat graph representation.

This proposition yields easily the partial correctness of the algorithm provided the con-
stantN is sufficiently high:

Proposition 4. Let IG = hVI ; RI ; RDIi be an inference graph, and let MAXLEVEL(IG)
be the maximum level at which an argument ofVI becomes stably in or stably out. IfN �
MAXLEVEL(IG), then in the termination state of the algorithm the defeat status assignment
is right according to Definition 4.

Termination is proved inductively as follows. Let us say that, at a given instant of time, the
computation isstable at level kiff all nodes� such that d[�] = k will not make moves any
more, and no node� will update d[�] to k. It is possible to prove the following proposition:

Proposition 5. If the computation is stable at levelk, with 0 � k < N , then the computation
becomes stable at levelk + 1 in a finite amount of time.

As it can be easily verified, each node� cannot make any move that update d[�] to a value
strictly greater thanN , therefore termination of the algorithm can be proved by applying
inductively the above proposition. Moreover, it can be proved that MAXLEVEL(IG) �
n � 1, wheren is the number of nodes of the inference graph, therefore the algorithm turns
out to be correct provided thatN � n� 1.

4 Conclusions

In this paper, we have presented two self-stabilizing algorithms for defeat status computa-
tion, one specifically tailored to rebutting defeat, and the other able to deal with any form of
defeat. The aim of this proposal is to extend to inference graphs the results on self-stabilizing
algorithms for defeat status computation previously applied to defeat graphs. This enables
the application of these algorithms in a multi-agent context, allowing to overcome some lim-
itations present in previous approaches to multi-agent argumentation.

To compare the proposed algorithms, we note that the more general algorithm requires a
guess onN , which represents the maximum length of the chains of the defeat relationships
that can be handled by the algorithm: it can be proved that all the arguments having more than
N arguments preceding them in their defeat chain are assigned the status of PROV, while all
other ones get the correct assignments.

Among future research directions we mention the experimentation of the proposed model
in a multi-agent architecture and the study of an integrated approach to self-stabilizing argu-
mentation systems that combines the advantages of both the proposed algorithms.

References

[1] P. Baroni and M. Giacomin. Argumentation through a distributed self-stabilizing approach.Journal of
Experimental and Theoretical Artificial Intelligence. To appear.

[2] P. Baroni and M. Giacomin. A distributed self-stabilizing algorithm for argumentation. InProceedings of
the 2001 International Parallel and Distributed Processing Symposium (IPDPS2001), San Francisco, CA,
2001. IEEE Press.

[3] P. Baroni, M. Giacomin, and G. Guida. Extending abstract argumentation systems theory.Artificial
Intelligence, 120(2):251–270, 2000.

[4] S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.

[5] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming, and n-person games.Artificial Intelligence, 77(2):321–357, 1995.

[6] M. Giacomin. Self-stabilizing distributed algorithms for defeat status computation in argumentation. In
V. Marik, O. Stepankova, H. Krautwurmova, and M. Luck, editors,Multi-Agent Systems and Application
II, Selected Revised Papers: 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001 (LNAI 2322),
pages 136–145. Springer-Verlag, Prague, Czech Republic, 2002.

[7] N. R. Jennings, S. Parsons, P. Noriega, and C. Sierra. On argumentation-based negotiation. InProceedings
of the International Workshop on Multi-Agent Systems, Boston, USA, 1998.

[8] S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through argumentation: A logical model and
implementation.Artificial Intelligence, 104(1–2):1–69, 1998.

[9] S. Parsons, C. Sierra, and N. Jennings. Agents that reason and negotiate by arguing.Journal of Logic and
Computation, 8(3):261–292, 1998.

[10] J. L. Pollock. How to reason defeasibly.Artificial Intelligence, 57(1):1–42, 1992.

[11] J. L. Pollock. Justification and defeat.Artificial Intelligence, 67:377–407, 1994.

[12] J. L. Pollock. The logical foundations of goal-regression planning in autonomous agents.Artificial Intel-
ligence, 106(2):267–334, 1998.

[13] H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In D. M. Gabbay and F. Guenth-
ner, editors,Handbook of Philosophical Logic, Second Edition. Kluwer Academic Publishers, Dordrecht,
2001.

[14] C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for argumentation-based negotiation.
In M. P. Singh, A. Rao, and M. J. Wooldridge, editors,Proceedings of the 4th International Workshop on
Agent Theories, Architectures, and Languages (ATAL-97), volume 1365 ofLNAI, pages 177–192, Berlin,
1998. Springer-Verlag.

[15] G. A. W. Vreeswijk. Abstract argumentation systems.Artificial Intelligence, 90(1–2):225–279, 1997.

