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Abstract

The paper presents the formaism of quantified causd-evidentia networks (Q/C-E
networks) for causa reasoning under uncertainty in networks of propositions. Firs,
the basic concept of C-E network isintroduced. The issue of representing uncertainty
about propositions and causa-evidential relations is then discussed and Q/C-E
networks are defined. Methods for propagating and aggregating uncertainty in a
Q/C-E network are proposed and their main properties are illustrated. The proposed
gpproach has been successfully experimented in the desgn and development of
ASTRA, aknowledge-based system for preventive diagnosis of power transformers.

1 Introduction

Reasoning under uncertainty in networks of propostionsis akey issue in gpplications
of atificd intdligence to diagnogs. Artificid intdligence literature offers awide range
of proposas concerning networks of propositions affected by uncertainty, such as
INFERNO [11], belief networks [8], and HUGIN [1]. Bonissone [4] has specified a
st of desiderata for an uncertainty management system. Many classical gpproaches,
however, fal to match very important requirements. For indance, the Bayesan
gpproach [9] does not clearly distinguish between ignorance and contradiction, and
Dempger-Shafer theory [12] requires a set of mutualy exclusve and exhaugtive
hypotheses to be available. Numerica representation of uncertainty suffers form
scarce cognitive plaughbility [6]. Driankov's uncertainty caculus [7] diminates many
of these drawbacks, however it is affected by some cognitive inconsstencies, as
pointed out, for example, in [3]. This paper presents Quantified Causa-Evidentid
networks (Q/C-E networks), a framework for reasoning under uncertainty in the



context of networks of propositions. This approach integrates the representation of
cause-effect and evidencejudtification relations between propostions with the
management of uncertainty that can affect both propostions and the reations
between them. Although some basic concepts of our proposd are shared with
Pearl’s belief networks [8] and with Driankov's uncertainty theory [7], Q/C-E
networks are not an extenson of any existing knowledge representation technique,
but, rather, an origind proposal. Q/C-E networks have been experimented in the
devdopment of ASTRA, a knowledge-based system for sate assessment and
preventive diagnoss of power transformers|[2].

2 C-E networks

A Causal-Evidential network (C-E network) is made up of afinite sat of nodes,
representing propositions, and a finite st of links between par of nodes,
representing relations between propositions. Each link is made up of two directed
arcs. one represents a causal relation and is cdled a C-link, whereas the other,
directed in the opposite direction, represents an evidentia relation and is caled an E-
link. Thus, if a proposition P is linked with a C-link to a propostion Q (i.e, P
Y4B Q), then Qislinked with an E-link to P (i.e,, Q ¥#4® P). The concept of C-
E network is better clarified by means of an example. Let us consider the following
two propostions (extracted from ASTRA): "Oil didectric srength is low" (OIL-
DIEL-LOW), "Partid discharges are present” (PARTIAL-DIS). In the modd of a
power transformer, OIL-DIEL-LOW represents a physical state which playstherole
of a"cause" with respect to the physica state represented by PARTIAL-DIS, which
plays the role of an "effect”. At the same time, if the physca state PARTIAL-DISis
observed, this can be
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Figure 1. A fragment of C-E network.

network shown in Figure 1.
3 From C-E networksto Q/C-E networks

3.1 From physical statesto mental models

An important aspect of reasoning with C-E networks concerns the possibility of
taking into account how much a proposition is believed and how much this belief
affects the beief in other propostions connected through C-links or E-links.



Therefore, in order to make the C-E network formaism appropriate to model (some
aspects of) human reasoning, the need of quantifying beliefs arises. Starting from
these consderations, let us define the concept of quantified C-E network. A
Quantified C-E network (Q/C-E network) is a C-E network where nodes
represent beliefs in propositions and links between pairs of nodes represent relations
between the corresponding beliefsin propositions.

Whereas propositions of C-E networks represent physical states of the world,
propositions of Q/C-E networks, represent beliefs; i.e. menta states of a person who
observes the world and reasons about it (for example, adomain expert).

In order to quantify how much a propostion is believed and how much this belief
affects the beliefs in other propositions connected to it, we must define the concepts
of "quantified propogtion” and "quantified relation”.

3.2 Quantified propostions

For the sake of clarity let us refer to the propostion "Partid discharges are present”
(PARTIAL-DIS). Inredl cases, such a proposition is not considered by the expert as
being definitely true or false, Snce there are no means of directly verifying it. In fact
the expert, on the bass of the avalable evidence in favor of PARTIAL-DIS, is
prompted to believe to a certain extent that PARTIAL-DIS is true, wheresas, on the
bass of other avalable evidence againgt PARTIAL-DIS, the expet may be
prompted to believe to a certain extent that PARTIAL-DIS is fdse. Bdiefs may
assume vaues in a finite, ordered set of belief degrees. We cdl quantified
proposition a proposition P having associated a belief par [be(P, true), bel(P,
fdse)], where bel (P, true) and bel (P, fase) represent the belief degrees related to the
truth and to the fasity of P respectively. The pair [bel (P, true), bel(P, fase)] is caled
the belief state of P.

3.3 Quantified relations

Even relations between propositions may be affected by uncertainty. The expert may
be not completely sure about the existence or non-existence of a link between any
pair of propodtions, because of incomplete knowledge about the world. For
example, consdering again the fragment of C-E network shown in Figure 1, if heis
certain that "Oil dielectric srength is low"(OIL-DIEL-LOW), then he may believe to
a cartain extent (but not completely) that, as a consequence, "Partid discharges are
present” (PARTIAL-DIS), in fact there are other (not completely known) factors
which may enable or prevent low oil dielectric Srength to produce partid discharges.
Therefore, uncertainty can relate both to propostions and to relations between
propogitions. However, the following digtinction should be noticed. Belief degrees
asociated to a proposition may be revisted whenever new evidence becomes
avaladle The beief gate of a quantified propodtion is determined on the basis of the
knowledge available about the current state of the world, so in a sense it can be
conddered as being a sort of "fresh knowledge"'. For example, how much the expert



believes that "water concentration in oil is high* (WATER-HIGH) depends on the
result of a measure on the current oil sample. On the contrary, how much an expert
believes in arelation between two propositions may be considered as being a sort of
"consolidated knowledge', resulting from the syntheds of severa experiences
occurred in the padt. It was during these experiences that the expert collected
evidences in favour or againgt a relation between propositions, but the precise record
of the past experiences from which this relationa knowledge was origindly derived is
generaly logt (it is the so cdled "paradox of expertise”: the expert does not know
why he knows). Moreover, relationa knowledge only concerns believed relations
(i.e. believed a least to a given degree), Since reations which are not believed (either
disbelieved or unknown) are smply not asserted. In concluson, uncertainty of
reaions is represented through the quantification of the extent to which one is
authorized to believe in the existence and vdidity of a rdaion. Given this premise let
us asociate a Sngle belief degree to a relation representing how much that rdation is
believed by the expert. The vaue of this belief degree may be dicited asking the
expert how much he is prompted to believe in Q, supposed that P is totally believed
to betrue.

We cdl quantified relation a rdaion P34 Q having associated a belief
bel (P3%4R Q, true) that represent the belief degree related to the truth of P34/4R Q.
The belief be (P34 Q, true) is called the belief level of P34 Q.

It should be noted that the belief levels of the two opposite links (causd and
evidential) connecting a pair of propostions (namely: P ¥#4R Q and Q ¥#4R P)
are independent quantifications.

3.4 Representing uncertainty with Q/C-E Networks

A bdlief degree is usudly represented as a red number in the closed interva [0, 1].
However, as it is wdl known, it is not naturd for an expert to express a belief
judgement in numerical form. Nor it is easy for a user to attach a correct intuitive
meaning to a numericad bdidf. It is much eeser and more naturad to use vague
linguistic labels. For example, let us consder the question: if you are sure that "Qil
didectric gsrength is low" (OIL-DIEL-LOW), what is your degree of belief that
"Partid discharges are present” (PARTIAL-DIS)? The expert finds more natural
answering by choosing among a st of vague terms like for example { very-low, low,
..., high, very-high}, than choosing a number in [0, 1]. Moreover vague terms may be
represented as fuzzy numbers [13], matching this way the requirements of naturd
knowledge dlicitation and presentation with the need of formal caculus. In the case of
ASTRA, for example, a scde of nine linguigtic labels have been adopted, derived
from [5], namdy: [UNINFORMED, EXTREMELY UNLIKELY, MOST
UNLIKELY, UNLIKELY, IT MAY, LIKELY, MOST LIKELY, EXTREMELY
LIKELY, CERTAIN]. Each labdl in this set is represented in short form as , where
i =1, 2 .., 9 E; (UNINFORMED, the minimum) represents negligible belief



(including null belief) in the truth or fasity of a proposgtion P, while B (CERTAIN,
the maximum) represents full belief in the truth or fasty of P.

4 Reasoning under uncertainty in Q/C-E Networks

Reasoning under uncertainty in Q/C-E networks concerns both the propagation of
belief gates through C- and E-links and the aggregetion of bdief states concerning
the same proposition and originated from different information sources. For the sake
of clarity, we examine propagation in two stages. loca propagetion (i.e., from-one
node to the adjacent nodes) and global propagation (i.e., propagation of belief states
through the entire Q/C-E network).

4.1 Local propagation
Given two linked propositions P and Q and given the C-link belief levels of the C-
and E-link between them, propageting a belief sate from P to Q means establishing
which belief state should be associated to Q given the belief state associated to P.
More precisdly, let us define local propagation as the problem of deriving [bel(Q,
true), bel(Q, fse)] from [bel(P, true), bel(P, fdse)], bel(P ¥#4® Q), and bel(Q
SR P).
Asfar asbe(Q, true) is concerned, it is defined as follows:

bel(Q, true) = bel(P, true) « bel(P 7#4®) Q),
where the symbol * denotes for a T-norm operator (see [4] for a forma definition)
between the fuzzy numbers representing belief degrees This way of caculating
bel (Q, true) is based on mere common-sense and proves to be sound. In fact, on the
badis of the definition of belief level, the computation of bel(Q, true) follows from the
intuitive proportion:

Eg: be(P ¥#4R Q) = bel(P, true) : x.
Asfar as bel(Q, fase) is concerned, it should be derived from bel(P, fase) through
be(w P ¥#4R w Q). However knowledge about w P ¥#4R) w Q is not available
in a Q/C-E network. Wheat is available isbel(Q ¥#4® P), but how can this be used

to derive bel(Q, fdse)? To answer this question, let us note that, intuitively, the more
one is prompted to believe in P, because of bdief in Q, the more he is prompted to
beievein w Q, because of bief in w P. This point was confirmed during knowledge
eicitation for ASTRA, both in case of an effect with only one cause and in case of an
effect with multiple possible causes. For example, as far as the case of an effect with
only one cause is concerned, let us consder the following case. When a trandformer
isin sarvice, the event "Winding buckling'(WIND-B) may only be caused by "Over-
current events' (OCE). In this case the belief levd a which the expert is prompted to
believe in the hypothesis OCE, because of his belief sate in WIND-B is very high,
i.e. the belief degree of WIND-B ##4® OCE is very high. On the other hand, the
belief level a which the bdief in the absence of over-current events (i.e, w OCE)



produces the belief that there is no winding buckling (i.e,, v WIND-B) is very high
too, due to the strong correlation between them.
On the bass of these remarks, we postulate the numerica equdity between
be(w P ¥#4R w Q) and bel(Q ¥#4R P). As a consequence bd(Q, fdse) is
defined asfollows:

bel(Q, fase) = bel (P, fase) « bel(Q ¥#4R» P).

The discussion of loca propagation presented above has consdered the case of
deriving the belief state of an effect from that of a cause. Parallel consderations can
be made for the problem of deriving the belief state of a cause from that of an effect.
In this case the following relations hold:

bel (P, true) = bel(Q, true) = bell(Q¥#.® P)

bel (P, false) = bel(Q, fase)  bell (P¥#:® Q).

4.2 Global propagation

The globa propagation procedure adopted in our Q/C-E networks aims at

reproducing the following reasoning pettern: first, hypotheses explaining collected

evidences are produced through evidentid reasoning (dong E-links only), then
consequences of the drawn hypotheses are deduced through causal reasoning (along

CHinks only), and eventudly an assessment of reasons for believing or disbdieving in

each proposition is established. As a consequence global propagation is made up

of the following 5 steps:

1. E-propagation: the initid belief sates (acquired from the available evidences) are
propagated aong E-links through the entire Q/C-E network;

2. E-aggregation: at the end of step 1, any proposition generaly has more than one
associated belief date, derived through different E-propagation paths or from
initid evidences, these belief Sates have therefore to be aggregated into a unique
belief date representing how much the propostion is believed so far, on the
basis of evidentid reasoning only;

3. C-propagation: the belief states obtained in step 2 are propagated aong C-links
through the entire Q/C-E network;

4. C-aggregation: at the end of step 3, any proposition generdly has more than one
associated belief dtate, derived through different C-propagetion paths, these
belief dates have therefore to be aggregated into a unique beief date
representing how much the proposition is believed so far on the bass of the
belief states propagated through causa reasoning only;

5. E-C aggregation: a find judgment about the belief date of the propostions is
synthesized through aggregetion of the results of E- and C-aggregation.

In propagating belief gtates throughout a C-E network one should pay particular
attention to two points. cyclic dependencies and illegd inferences. The problem of



cyclic dependencies [3] concerns the presence of loops composed by C-arcs or E-
arcs within the network. It can be smply solved in our case by labeling each
propagated belief state with the list of al previoudy vidted nodes. propagation is then
blocked when an dready vidted node is reached again. The problem of illegal
inferences, as described in [10], concerns counter-intuitive conclusons that may be
drawn if causal and evidentid reasoning are indiscriminately gpplied. Focusing on the
example proposed in [10], let us consder the three propositions: "It rained last night”
(RAIN), "The sprinkler was on lagt night" (SPRINK), "The grassis wet" (WET). In
an intuitive world modd, both RAIN and SPRINK may cause WET and, as a
consequence, RAIN and SPRINK may be evidentidly hypothesized gtarting from
WET. So, if both causal and evidentia propagation is indistinctly gpplied one could
erroneoudy deduce RAIN from SPRINK, which apparently contradicts common-
sense. The problem can be solved if we assume that a belief state derived, for anode
X, through a causd link ending in X can be propagated only aong causd links leaving
X (not dong evidentid links). Thet is, intuitively, if one knows the cause of afact, he
is not dlowed to infer anything about other possible causes of the same fact (from
causes one can only infer consegquences). lllegd inferences are Smply and naturdly
avoided in our approach since E- and C-propagation are carried out separately and
can not be fredy intermixed.

4.3 Aggregation

In order to formaly define aggregation, let us introduce some preliminary concepts.
Wecdl belief plane the Cartesian plane of al posshble belief dates of a generic
proposition P: the vertica axis represents the possible vaues of be(P, true) and the
horizontal axis those of bel(P, fase). Vaues of both axes are represented by the nine
belief labelsEq .. Eg. Any belief state [bel (P, true) bel(P, fase)] is represented by a
point in the belief plane. Four points in the belief plane are worth specid attention,
gnce they convey a definite intuitive ssmantics, namdly:

» theD poaint ([E1, Eg]) which meanstotally disbelieved;

» theB point ([Eg, E1]) which meanstotdly bdieved;

» theU point ([E1, E1]) which means unknown,

» theC paoint ([E9, Eg]) which means contradictory.



The above concept are shown in Figure e e
2. The C-U diagond, cdled the null seewe
diagonal, is the locus of dl bdief pairs fY D
for which be (P, true) = bel(P, fdse), so E2
that one can not make any decison E3
about the truth or the fdsty of P. The
gregter the digance in the bdief plane
between the representation of a belief
date and the null diagond, the more it is
possible to make a clear decison about a o
proposition. The points D and B, placed E8
a the maximum disgance from the null E9
diagond, ae null-indecison points.
Therefore, we can assign to each point of Figure 2: The belief plane.

the belief plane a decision strength,

proportiond to its distance from the null diagond: the maximum drength (say, 1) is
assgned to both D and B, whereas the minimum - actualy null - strength (say, 0) is
assigned to the points on the null diagond. Another remark is now appropriate. Let
us congder, just as a starting point, the specific Stuation where to a propostion P
two bdief dates are associated, namdy: [E1, E1] (the U point) and [Eg, E9g] (the C
point). Although these two belief states are equivaent with respect to the decison
about the truth or the falsity of P (null decison strength), if one has to choose asingle
point in the belief plane representing the Stuation as a whole (i.e,, the aggregation
point), then he is inclined to choose the point C rather than U. In fact, the point C is
more informed than U; it is grounded on a grester amount of evidence or,
equivaently, on a more powerful belief. Therefore, in generd, it can be argued that
the totd amount of belief carried by a belief ate (i.e, belief in the truth of P plus
belief in the fadty of P) has a role in choosng the aggregation point in the belief
plane. Thus, we can assign to each point of the belief plane a decision power,
proportiond to its distance from the U point: the maximum power (say, 1) is assgned
to C whereas the minimum power (say, 0) isassigned to U.

Let usturn now to the main issue of aggregation.

For aggregation, two different gpproaches have been taken into account, namely:
monotonic aggregation, and non-monotonic aggregation. Monotonic aggregeation is
used in step 4 (C-aggregation) while non-monotonic aggregation is used in the steps
2 and 5 (E- and EC-aggregation).

Monotonic aggregation, means that a belief date expressng disbdief must not
produce a weekening effect when aggregated with a belief state expressing bdlief.
This is according to common sense in C-aggregetion. In fact, the disbelief in one of
the causes of a certain effect, should not wesken the belief in the effect due to the
presence of other causes. Therefore, aggregation is said to be monotonic, if a belief
date resulting from a subsequent aggregation, can not have a distance from the B
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point grester than the disance of the bdief date resulting from a previous
aggregation. According to the intuitive concept introduced above, monotonic
aggregation of a set of belief states associated to a proposition P (derived through
different propagation paths), can be smply obtained by selecting in the set the bdlief
date which is closest to the B point.
Non-monotonic aggregation, indead, does not imply any distance condraint
related to results of subsequent aggregations. This can be achieved by taking into
account both the digtribution of different belief states and their number. For example,
if there are two belief states associated to a propodtion P which are in conflict,
aggregating them requires being able to reach some sort of balance between them.
Moreover, having just one belief date indicating that the propostion P is highly
disbdlieved is not the same, for a correct common sense judgment, as having four or
seven of such beief sates, assuming that they originate from independent evidence
sources. This is according to common sense in E- and E-C aggregation. In fact, a
belief based on a collected evidence, may be retracted if other contrasting evidences
aise.
According to the intuitive concept introduced above, non-monotonic aggregation of a
st of beief dates associated to a propodstion P (derived through different
propagation paths), can be obtained by taking into account both the decision strength
and the decison power of dl the dements in the set. This can be done by defining a
nor-monotonic aggregation operator based on a principle of eastic equilibrium.
More precisaly, we firgt represent dl the belief states of P in the correct positions on
the belief plane and consder them as fixed points. Then, we provide ided dadtic
Springs connecting each of these points with a mobile point representing the (desired)
result of non-monotonic aggregation (i.e., the aggregated belief sate of P), and we
define gppropriate eastic constants (K j) for such springs. For ageneric point X inthe
belief, let usdefineK as

K = decison-strength(X) + decision-power(X).
Findly, we compute the postion of dadtic equilibrium of P in the bdief plane and
interpret it as the aggregated bdief sate of P. More formdly, given a set = {[t1 f1],
[t22], ..., [tn fn]}, the non-monotonic aggregation operator computes the belief state
[tx fX], where tx and fx are the roots of the following equations.

K1« (tx - t1) + K2% (tx - t2) + ... + Knx(tx - tn) = 0

K1x(fx - f1) + K2« (fx - f2) + ... + Knk (fx - fn) = 0.

5 The ASTRA system

ASTRA[2] has been developed usng KAPPA, a multiparadigm development tool
running under Windows 3.1, on a 486 PC. In order to face the inherent complexity
of the method human experts use to assess the state of a transformer and diagnose
incipient faults, ASTRA has been designed as a distributed knowledge-based system,
where separate agents, called specialists cooperate to carry out the globa



diagnostic task. Each specidist has its own knowledge base and is able to
autonomoudy reason on (a part of the) input data and to draw partia conclusions.
Specidigt are divided in six competence areas, namey: user interaction, globa
problem, empiricd, historicd, structural, and causa.

Q/C-E networks have been used as the knowledge representation formaism of the
oecidigts belonging to causd area. The formdism has been implemented using
KAPPA's object-oriented features: node and links of the network are objects,
respectively ingances of the classes Nodes and Links. The class Nodes includes
methods implementing the aggregation mechaniams, the cdass Links methods
implementing loca propagation. Globa propagation is carried out through message
passing among the objects representing the network.

All specidigts have been developed and tested separately before being integrated
within ASTRA. During development and testing, propagation and aggregetion
mechanisms have been repeatedly modified and refined. The verson presented in this
paper showed a good cognitive plausibility and matching with expert's reasoning
features. The whole ASTRA system has been extensvely tested with both smulated
and red cases, showing a very good matching between expert's and system's
judgments.

6 Conclusions

Q/C-E networks have been introduced in this paper as a formaism for reasoning

under uncertainty in causal-evidentia networks of propositions. Coherent methods

for uncertainty propagation and aggregation in Q/C-E networks have been proposed.

Q/C-E networks have been successfully experimented in the development of

ASTRA, a knowledge-based system for preventive diagnosis of power transformers

[2]. Future work on Q/C-E networks will ded with the following main issues.

» the extenson of the concept of belief levd in order to distinguish between
uncertainty about the applicability and about the vaidity of ardation;

» the proposd and experimentation of new aggregation operators, based on
different principles than dagtic equilibrium;

* the explicit representation of the process of evidence-dicitation, consdered as an
integra part of uncertain reasoning;

» theinvedtigation of uncertainty-based heuristics to be used for propagation in large
networks, where exhaustive search can not be carried out.
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