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Abstract

The paper presents the formalism of quantified causal-evidential networks (Q/C-E
networks) for causal reasoning under uncertainty in networks of propositions. First,
the basic concept of C-E network is introduced. The issue of representing uncertainty
about propositions and causal-evidential relations is then discussed and Q/C-E
networks are defined. Methods for propagating and aggregating uncertainty in a
Q/C-E network are proposed and their main properties are illustrated. The proposed
approach has been successfully experimented in the design and development of
ASTRA, a knowledge-based system for preventive diagnosis of power transformers.

1 Introduction

Reasoning under uncertainty in networks of propositions is a key issue in applications
of artificial intelligence to diagnosis. Artificial intelligence literature offers a wide range
of proposals concerning networks of propositions affected by uncertainty, such as
INFERNO [11], belief networks [8], and HUGIN [1]. Bonissone [4] has specified a
set of desiderata for an uncertainty management system. Many classical approaches,
however, fail to match very important requirements. For instance, the Bayesian
approach [9] does not clearly distinguish between ignorance and contradiction, and
Dempster-Shafer theory [12] requires a set of mutually exclusive and exhaustive
hypotheses to be available. Numerical representation of uncertainty suffers form
scarce cognitive plausibility [6]. Driankov's uncertainty calculus [7] eliminates many
of these drawbacks; however it is affected by some cognitive inconsistencies, as
pointed out, for example, in [3]. This paper presents Quantified Causal-Evidential
networks (Q/C-E networks), a framework for reasoning under uncertainty in the



context of networks of propositions. This approach integrates the representation of
cause-effect and evidence-justification relations between propositions with the
management of uncertainty that can affect both propositions and the relations
between them. Although some basic concepts of our proposal are shared with
Pearl’s belief networks [8] and with Driankov’s uncertainty theory [7], Q/C-E
networks are not an extension of any existing knowledge representation technique,
but, rather, an original proposal. Q/C-E networks have been experimented in the
development of ASTRA, a knowledge-based system for state assessment and
preventive diagnosis of power transformers [2].

2 C-E networks

A Causal-Evidential network (C-E network) is made up of a finite set of nodes,
representing propositions, and a finite set of links between pair of nodes,
representing relations between propositions. Each link is made up of two directed
arcs: one represents a causal relation and is called a C-link, whereas the other,
directed in the opposite direction, represents an evidential relation and is called an E-
link. Thus, if a proposition P is linked with a C-link to a proposition Q (i.e., P

  C  →   Q), then Q is linked with an E-link to P (i.e., Q   E 
 →   P). The concept of C-

E network is better clarified by means of an example. Let us consider the following
two propositions (extracted from ASTRA): "Oil dielectric strength is low" (OIL-
DIEL-LOW), "Partial discharges are present" (PARTIAL-DIS). In the model of a
power transformer, OIL-DIEL-LOW represents a physical state which plays the role
of a "cause" with respect to the physical state represented by PARTIAL-DIS, which
plays the role of an "effect". At the same time, if the physical state PARTIAL-DIS is

observed, this can be
interpreted as an
"evidence" which can find a
"justification" in the physical
state OIL-DIEL-LOW.
Therefore, this piece of
knowledge can be
appropriately represented
by the fragment of C-E

network shown in Figure 1.

3 From C-E networks to Q/C-E networks

3.1 From physical states to mental models
An important aspect of reasoning with C-E networks concerns the possibility of
taking into account how much a proposition is believed and how much this belief
affects the belief in other propositions connected through C-links or E-links.

Figure 1: A fragment of C-E network.
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Therefore, in order to make the C-E network formalism appropriate to model (some
aspects of) human reasoning, the need of quantifying beliefs arises. Starting from
these considerations, let us define the concept of quantified C-E network. A
Quantified C-E network (Q/C-E network) is a C-E network where nodes
represent beliefs in propositions and links between pairs of nodes represent relations
between the corresponding beliefs in propositions.
Whereas propositions of C-E networks represent physical states of the world,
propositions of Q/C-E networks, represent beliefs; i.e. mental states of a person who
observes the world and reasons about it (for example, a domain expert).
In order to quantify how much a proposition is believed and how much this belief
affects the beliefs in other propositions connected to it, we must define the concepts
of "quantified proposition" and "quantified relation".

3.2 Quantified propositions
For the sake of clarity let us refer to the proposition "Partial discharges are present"
(PARTIAL-DIS). In real cases, such a proposition is not considered by the expert as
being definitely true or false, since there are no means of directly verifying it. In fact
the expert, on the basis of the available evidence in favor of PARTIAL-DIS, is
prompted to believe to a certain extent that PARTIAL-DIS is true, whereas, on the
basis of other available evidence against PARTIAL-DIS, the expert may be
prompted to believe to a certain extent that PARTIAL-DIS is false. Beliefs may
assume values in a finite, ordered set of belief degrees. We call quantified
proposition a proposition P having associated a belief pair [bel(P, true), bel(P,
false)], where bel(P, true) and bel(P, false) represent the belief degrees related to the
truth and to the falsity of P respectively. The pair [bel(P, true), bel(P, false)] is called
the belief state of P.

3.3 Quantified relations
Even relations between propositions may be affected by uncertainty. The expert may
be not completely sure about the existence or non-existence of a link between any
pair of propositions, because of incomplete knowledge about the world. For
example, considering again the fragment of C-E network shown in Figure 1, if he is
certain that "Oil dielectric strength is low"(OIL-DIEL-LOW), then he may believe to
a certain extent (but not completely) that, as a consequence, "Partial discharges are
present" (PARTIAL-DIS), in fact there are other (not completely known) factors
which may enable or prevent low oil dielectric strength to produce partial discharges.
Therefore, uncertainty can relate both to propositions and to relations between
propositions. However, the following distinction should be noticed. Belief degrees
associated to a proposition may be revisited whenever new evidence becomes
available. The belief state of a quantified proposition is determined on the basis of the
knowledge available about the current state of the world, so in a sense it can be
considered as being a sort of "fresh knowledge". For example, how much the expert



believes that "water concentration in oil is high" (WATER-HIGH) depends on the
result of a measure on the current oil sample. On the contrary, how much an expert
believes in a relation between two propositions may be considered as being a sort of
"consolidated knowledge", resulting from the synthesis of several experiences
occurred in the past. It was during these experiences that the expert collected
evidences in favour or against a relation between propositions, but the precise record
of the past experiences from which this relational knowledge was originally derived is
generally lost (it is the so called "paradox of expertise": the expert does not know
why he knows). Moreover, relational knowledge only concerns believed relations
(i.e. believed at least to a given degree), since relations which are not believed (either
disbelieved or unknown) are simply not asserted. In conclusion, uncertainty of
relations is represented through the quantification of the extent to which one is
authorized to believe in the existence and validity of a relation. Given this premise let
us associate a single belief degree to a relation representing how much that relation is
believed by the expert. The value of this belief degree may be elicited asking the
expert how much he is prompted to believe in Q, supposed that P is totally believed
to be true.
We call quantified relation a relation P  →  Q having associated a belief
bel(P  →  Q, true) that represent the belief degree related to the truth of P →  Q.
The belief bel(P  →  Q, true) is called the belief level of P  →  Q.
It should be noted that the belief levels of the two opposite links (causal and
evidential) connecting a pair of propositions (namely: P   C  →   Q and Q   E  →   P)

are independent quantifications.

3.4 Representing uncertainty with Q/C-E Networks
A belief degree is usually represented as a real number in the closed interval [0, 1].
However, as it is well known, it is not natural for an expert to express a belief
judgement in numerical form. Nor it is easy for a user to attach a correct intuitive
meaning to a numerical belief. It is much easier and more natural to use vague
linguistic labels. For example, let us consider the question: if you are sure that "Oil
dielectric strength is low" (OIL-DIEL-LOW), what is your degree of belief that
"Partial discharges are present" (PARTIAL-DIS)? The expert finds more natural
answering by choosing among a set of vague terms like for example {very-low, low,
..., high, very-high}, than choosing a number in [0, 1]. Moreover vague terms may be
represented as fuzzy numbers [13], matching this way the requirements of natural
knowledge elicitation and presentation with the need of formal calculus. In the case of
ASTRA, for example, a scale of nine linguistic labels have been adopted, derived
from [5], namely: [UNINFORMED, EXTREMELY UNLIKELY, MOST
UNLIKELY, UNLIKELY, IT MAY, LIKELY, MOST LIKELY, EXTREMELY
LIKELY, CERTAIN]. Each label in this set is represented in short form as Ei, where
i = 1, 2, ..., 9. E1 (UNINFORMED, the minimum) represents negligible belief



(including null belief) in the truth or falsity of a proposition P, while E9 (CERTAIN,
the maximum) represents full belief in the truth or falsity of P.

4 Reasoning under uncertainty in Q/C-E Networks

Reasoning under uncertainty in Q/C-E networks concerns both the propagation of
belief states through C- and E-links and the aggregation of belief states concerning
the same proposition and originated from different information sources. For the sake
of clarity, we examine propagation in two stages: local propagation (i.e., from-one
node to the adjacent nodes) and global propagation (i.e., propagation of belief states
through the entire Q/C-E network).

4.1 Local propagation
Given two linked propositions P and Q and given the C-link belief levels of the C-
and E-link between them, propagating a belief state from P to Q means establishing
which belief state should be associated to Q given the belief state associated to P.
More precisely, let us define local propagation as the problem of deriving [bel(Q,
true), bel(Q, false)] from [bel(P, true), bel(P, false)], bel(P   C  →   Q), and bel(Q

  E 
 →   P).

As far as bel(Q, true) is concerned, it is defined as follows:
bel(Q, true) = bel(P, true) * bel(P   C  →   Q),

where the symbol * denotes for a T-norm operator (see [4] for a formal definition)
between the fuzzy numbers representing belief degrees. This way of calculating
bel(Q, true) is based on mere common-sense and proves to be sound. In fact, on the
basis of the definition of belief level, the computation of bel(Q, true) follows from the
intuitive proportion:

E9 : bel(P   C  →   Q) = bel(P, true) : x.

As far as bel(Q, false) is concerned, it should be derived from bel(P, false) through
bel(¬ P   C  →   ¬ Q). However knowledge about ¬ P   C  →   ¬ Q is not available

in a Q/C-E network. What is available is bel(Q   E 
 →   P), but how can this be used

to derive bel(Q, false)? To answer this question, let us note that, intuitively, the more
one is prompted to believe in P, because of belief in Q, the more he is prompted to
believe in ¬ Q, because of belief in ¬ P. This point was confirmed during knowledge
elicitation for ASTRA, both in case of an effect with only one cause and in case of an
effect with multiple possible causes. For example, as far as the case of an effect with
only one cause is concerned, let us consider the following case. When a transformer
is in service, the event "Winding buckling"(WIND-B) may only be caused by "Over-
current events" (OCE). In this case the belief level at which the expert is prompted to
believe in the hypothesis OCE, because of his belief state in WIND-B is very high,
i.e. the belief degree of WIND-B   E 

 →   OCE is very high. On the other hand, the

belief level at which the belief in the absence of over-current events (i.e., ¬ OCE)



produces the belief that there is no winding buckling (i.e., ¬ WIND-B) is very high
too, due to the strong correlation between them.
On the basis of these remarks, we postulate the numerical equality between
bel(¬ P   C  →   ¬ Q) and bel(Q   E  →   P). As a consequence bel(Q, false) is

defined as follows:
bel(Q, false) = bel(P, false) * bel(Q   E 

 →   P).

The discussion of local propagation presented above has considered the case of
deriving the belief state of an effect from that of a cause. Parallel considerations can
be made for the problem of deriving the belief state of a cause from that of an effect.
In this case the following relations hold:

bel(P, true) = bel(Q, true) * bell(Q
E

 → P)

bel(P, false) = bel(Q, false) * bell(P
C

 → Q).

4.2 Global propagation
The global propagation procedure adopted in our Q/C-E networks aims at
reproducing the following reasoning pattern: first, hypotheses explaining collected
evidences are produced through evidential reasoning (along E-links only), then
consequences of the drawn hypotheses are deduced through causal reasoning (along
C-links only), and eventually an assessment of reasons for believing or disbelieving in
each proposition is established. As a consequence global propagation is made up
of the following 5 steps:
1. E-propagation: the initial belief states (acquired from the available evidences) are

propagated along E-links through the entire Q/C-E network;
2. E-aggregation: at the end of step 1, any proposition generally has more than one

associated belief state, derived through different E-propagation paths or from
initial evidences; these belief states have therefore to be aggregated into a unique
belief state representing how much the proposition is believed so far, on the
basis of evidential reasoning only;

3. C-propagation: the belief states obtained in step 2 are propagated along C-links
through the entire Q/C-E network;

4. C-aggregation: at the end of step 3, any proposition generally has more than one
associated belief state, derived through different C-propagation paths; these
belief states have therefore to be aggregated into a unique belief state
representing how much the proposition is believed so far on the basis of the
belief states propagated through causal reasoning only;

5. E-C aggregation: a final judgment about the belief state of the propositions is
synthesized through aggregation of the results of E- and C-aggregation.

In propagating belief states throughout a C-E network one should pay particular
attention to two points: cyclic dependencies and illegal inferences. The problem of



cyclic dependencies [3] concerns the presence of loops composed by C-arcs or E-
arcs within the network. It can be simply solved in our case by labelling each
propagated belief state with the list of all previously visited nodes: propagation is then
blocked when an already visited node is reached again. The problem of illegal
inferences, as described in [10], concerns counter-intuitive conclusions that may be
drawn if causal and evidential reasoning are indiscriminately applied. Focusing on the
example proposed in [10], let us consider the three propositions: "It rained last night"
(RAIN), "The sprinkler was on last night" (SPRINK), "The grass is wet" (WET). In
an intuitive world model, both RAIN and SPRINK may cause WET and, as a
consequence, RAIN and SPRINK may be evidentially hypothesized starting from
WET. So, if both causal and evidential propagation is indistinctly applied one could
erroneously deduce RAIN from SPRINK, which apparently contradicts common-
sense. The problem can be solved if we assume that a belief state derived, for a node
X, through a causal link ending in X can be propagated only along causal links leaving
X (not along evidential links). That is, intuitively, if one knows the cause of a fact, he
is not allowed to infer anything about other possible causes of the same fact (from
causes one can only infer consequences). Illegal inferences are simply and naturally
avoided in our approach since E- and C-propagation are carried out separately and
can not be freely intermixed.

4.3 Aggregation
In order to formally define aggregation, let us introduce some preliminary concepts.
We call belief plane the Cartesian plane of all possible belief states of a generic
proposition P: the vertical axis represents the possible values of bel(P, true) and the
horizontal axis those of bel(P, false). Values of both axes are represented by the nine
belief labels E1, .. E9. Any belief state [bel(P, true) bel(P, false)] is represented by a
point in the belief plane. Four points in the belief plane are worth special attention,
since they convey a definite intuitive semantics; namely:
• the D point ([E1, E9]) which means totally disbelieved;
• the B point ([E9, E1]) which means totally believed;
• the U point ([E1, E1]) which means unknown;
• the C point ([E9, E9]) which means contradictory.



The above concept are shown in Figure
2. The C-U diagonal, called the null
diagonal, is the locus of all belief pairs
for which bel(P, true) = bel(P, false), so
that one can not make any decision
about the truth or the falsity of P. The
greater the distance in the belief plane
between the representation of a belief
state and the null diagonal, the more it is
possible to make a clear decision about a
proposition. The points D and B, placed
at the maximum distance from the null
diagonal, are null-indecision points.
Therefore, we can assign to each point of
the belief plane a decision strength,
proportional to its distance from the null diagonal: the maximum strength (say, 1) is
assigned to both D and B, whereas the minimum - actually null - strength (say, 0) is
assigned to the points on the null diagonal. Another remark is now appropriate. Let
us consider, just as a starting point, the specific situation where to a proposition P
two belief states are associated, namely: [E1, E1] (the U point) and [E9, E9] (the C
point). Although these two belief states are equivalent with respect to the decision
about the truth or the falsity of P (null decision strength), if one has to choose a single
point in the belief plane representing the situation as a whole (i.e., the aggregation
point), then he is inclined to choose the point C rather than U. In fact, the point C is
more informed than U; it is grounded on a greater amount of evidence or,
equivalently, on a more powerful belief. Therefore, in general, it can be argued that
the total amount of belief carried by a belief state (i.e., belief in the truth of P plus
belief in the falsity of P) has a role in choosing the aggregation point in the belief
plane. Thus, we can assign to each point of the belief plane a decision power,
proportional to its distance from the U point: the maximum power (say, 1) is assigned
to C whereas the minimum power (say, 0) is assigned to U.
Let us turn now to the main issue of aggregation.
For aggregation, two different approaches have been taken into account, namely:
monotonic aggregation, and non-monotonic aggregation. Monotonic aggregation is
used in step 4 (C-aggregation) while non-monotonic aggregation is used in the steps
2 and 5 (E- and EC-aggregation).
Monotonic aggregation, means that a belief state expressing disbelief must not
produce a weakening effect when aggregated with a belief state expressing belief.
This is according to common sense in C-aggregation. In fact, the disbelief in one of
the causes of a certain effect, should not weaken the belief in the effect due to the
presence of other causes. Therefore, aggregation is said to be monotonic, if a belief
state resulting from a subsequent aggregation, can not have a distance from the B
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               Figure 2: The belief plane.



point greater than the distance of the belief state resulting from a previous
aggregation. According to the intuitive concept introduced above, monotonic
aggregation of a set of belief states associated to a proposition P (derived through
different propagation paths), can be simply obtained by selecting in the set the belief
state which is closest to the B point.
Non-monotonic aggregation, instead, does not imply any distance constraint
related to results of subsequent aggregations. This can be achieved by taking into
account both the distribution of different belief states and their number. For example,
if there are two belief states associated to a proposition P which are in conflict,
aggregating them requires being able to reach some sort of balance between them.
Moreover, having just one belief state indicating that the proposition P is highly
disbelieved is not the same, for a correct common sense judgment, as having four or
seven of such belief states, assuming that they originate from independent evidence
sources. This is according to common sense in E- and E-C aggregation. In fact, a
belief based on a collected evidence, may be retracted if other contrasting evidences
arise.
According to the intuitive concept introduced above, non-monotonic aggregation of a
set of belief states associated to a proposition P (derived through different
propagation paths), can be obtained by taking into account both the decision strength
and the decision power of all the elements in the set. This can be done by defining a
non-monotonic aggregation operator based on a principle of elastic equilibrium.
More precisely, we first represent all the belief states of P in the correct positions on
the belief plane and consider them as fixed points. Then, we provide ideal elastic
springs connecting each of these points with a mobile point representing the (desired)
result of non-monotonic aggregation (i.e., the aggregated belief state of P), and we
define appropriate elastic constants (Ki) for such springs. For a generic point X in the
belief, let us define K as:

K = decision-strength(X) + decision-power(X).
Finally, we compute the position of elastic equilibrium of P in the belief plane and
interpret it as the aggregated belief state of P. More formally, given a set = {[t1 f1],
[t2 f2], ..., [tn fn]}, the non-monotonic aggregation operator computes the belief state
[tx fx], where tx and fx are the roots of the following equations:

K1*(tx - t1) + K2*(tx - t2) + ... + Kn*(tx - tn) = 0
K1*(fx - f1) + K2*(fx - f2) + ... + Kn*(fx - fn) = 0.

5 The ASTRA system

ASTRA[2] has been developed using KAPPA, a multiparadigm development tool
running under Windows 3.1, on a 486 PC. In order to face the inherent complexity
of the method human experts use to assess the state of a transformer and diagnose
incipient faults, ASTRA has been designed as a distributed knowledge-based system,
where separate agents, called specialists, cooperate to carry out the global



diagnostic task. Each specialist has its own knowledge base and is able to
autonomously reason on (a part of the) input data and to draw partial conclusions.
Specialist are divided in six competence areas, namely: user interaction, global
problem, empirical, historical, structural, and causal.
Q/C-E networks have been used as the knowledge representation formalism of the
specialists belonging to causal area. The formalism has been implemented using
KAPPA's object-oriented features: node and links of the network are objects,
respectively instances of the classes Nodes and Links. The class Nodes includes
methods implementing the aggregation mechanisms, the class Links methods
implementing local propagation. Global propagation is carried out through message
passing among the objects representing the network.
All specialists have been developed and tested separately before being integrated
within ASTRA. During development and testing, propagation and aggregation
mechanisms have been repeatedly modified and refined. The version presented in this
paper showed a good cognitive plausibility and matching with expert's reasoning
features. The whole ASTRA system has been extensively tested with both simulated
and real cases, showing a very good matching between expert's and system's
judgments.

6 Conclusions

Q/C-E networks have been introduced in this paper as a formalism for reasoning
under uncertainty in causal-evidential networks of propositions. Coherent methods
for uncertainty propagation and aggregation in Q/C-E networks have been proposed.
Q/C-E networks have been successfully experimented in the development of
ASTRA, a knowledge-based system for preventive diagnosis of power transformers
[2]. Future work on Q/C-E networks will deal with the following main issues:
• the extension of the concept of belief level in order to distinguish between

uncertainty about the applicability and about the validity of a relation;
• the proposal and experimentation of new aggregation operators, based on

different principles than elastic equilibrium;
• the explicit representation of the process of evidence-elicitation, considered as an

integral part of uncertain reasoning;
• the investigation of uncertainty-based heuristics to be used for propagation in large

networks, where exhaustive search can not be carried out.
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