A Distributed Self-stabilizing Approach to Defeat Status
Computation in Argumentation

P. Baroni

Dip. di Elettronica per I’Automazione

Universita di Brescia,
Via Branze 38, 1-25123 Brescia, Italy
baroni@ing.unibs.it

Abstract

Argumentation is an approach to
practical uncertain reasoning which
is receiving an increasing attention
in the field of autonomous agents.
Since decentralized agent architec-
tures have been advocated by sev-
eral authors, we propose a distrib-
uted approach to argumentation, in
which independent processes carry
out argumentation activity exploit-
ing local information only. The issue
of coordination has been explicitely
tackled by devising a general self-
stabilizing algorithm for the defeat
status computation of arguments.

Keywords: Argumentation, Dis-
tributed Computing.

1 Introduction

In argumentation theory commonsense rea-
soning dealing with incomplete and uncer-
tain information is modeled as the process
of constructing and comparing arguments for
propositions. Arguments are constructed
from a given set of premises by chaining rules
of inference to reach a conclusion, therefore
they correspond to “proofs” in standard logic.
However, while in standard logic rules of infer-
ence correspond to deductive reasons, which
logically entail their conclusion, in defeasible
reasoning they may represent just provisional
reasons, that can be defeated in presence of
new information. In such a framework, differ-
ent arguments may contradict each other, and

M. Giacomin

Dip. di Elettronica per I’Automazione

Universita di Brescia,
Via Branze 38, 1-25123 Brescia, Italy
giacomin@ing.unibs.it

previously accepted propositions can be dis-
carded in front of counterarguments. The core
problem consists then in computing the “de-
feat status” of the arguments, i.e. determin-
ing which ones of them emerge undefeated:
their conclusions are the most credible ones
and should be believed.

Argumentation is receiving an increasing at-
tention as a technique underlying the realiza-
tion of intelligent autonomous agents [12, 13,
10]. Besides providing an integrated model for
belief revision and defeasible reasoning [3], it
takes into account the resource-bounded na-
ture of a real agent, by providing the pos-
sibility of acting before the completion of
the reasoning process [12]. In this paper,
we focus on the use of argumentation within
an autonomous agent, and we assume, as
usual, that the agent is situated in a dynamic
and uncertain world. As the external world
changes, the agent is required to track down
those features it is interested in, by managing
several sensors, which are usually redundant
and not completely reliable. In this case, it is
reasonable to suppose that the agent will have
to manage arguments generally based on mul-
tiple premises, having different degrees of re-
liability. In order to carry out argumentation,
the agent is engaged in two main activities:

1. on one hand, it has to develop inferences
on the basis of premises continuously up-
dated by perceptual activity and of the
conclusions previously drawn;

2. on the other hand, it has to revise the de-
feat status of its conclusions as a conse-
quence of new conflicting arguments pro-

duced by the inferential activity.

While a decentralized organization has been
widely recognized as an appropriate paradigm
for autonomous agent architectural design, in
all the argumentation approaches in the lit-
erature we are aware of, these two activities
are delegated to a centralized algorithm ex-
ploiting complete global information. As a
consequence, these approaches are inherently
unable to exploit the potential advantages of
a distributed organization, which have been
advocated in several works about agent archi-
tectures (e.g. [1, 4]). In order to overcome
this limitation, we define an approach where
argumentation activity is distributed among
different processes, which perform their com-
putation asynchronously. For the sake of gen-
erality, we do not specify where or when in-
formation to make inferences is acquired, and
we do not commit either to a specific form of
the arguments or to a particular definition of
defeat. Moreover, we adopt the “finest grain”
model as far as distribution of arguments is
concerned, in that each process puts forward
exactly one argument. In this model, which
approximately corresponds to our AMEs ar-
chitecture [1], each process can be identified
with its argument: in the following, we will
refer to either of them without distinction.

Each process executes a program, in order to
choose its own status of defeat on the basis of
the current status assignments of its defeaters.
Since there is no central locus of control, the
status of its defeaters can only be acquired
by exploiting local exchanges of information.
Because of perceptual and inferential activity,
the set of the arguments and their defeat re-
lationship are dynamic: new processes can be
generated and old processes can be removed
corresponding to the addition of arguments
(inferential activity) and the addition or re-
moval of premises (perceptual activity). The
overall status assignment has to adapt to this
dynamics, therefore each process has to mon-
itor its neighbors to track down their possible
modifications, and it has to revise its own sta-
tus accordingly.

Since computation is carried out by asynchro-
nous processes which have only a limited, lo-

cal view, the issue of coordinating their activ-
ity has to be explicitely taken into account.
For this reason, we introduce the requirement
that the system as a whole has to satisfy a
well founded semantics, namely it must assign
to the arguments (in a finite amount of time)
the same defeat status they would be assigned
by a sound centralized algorithm exploiting
global information. This requirement cor-
responds to the property of self-stabilization
[5]: regardless of the initial defeat statuses
assigned to different arguments, each process
eventually adjusts its assignment to the cor-
rect value. As a consequence, the algorithm
can withstand both the addition or removal of
processes and changes in the defeat relation-
ship among arguments.

2 The Argumentation System

In this section, we present the argumentation
system we will use in the paper.

2.1 The Argumentation Framework

For the sake of generality, we follow the ap-
proach adopted by Dung [6] which completely
abstracts from both the internal structure of
arguments and the specific notion of defeat
between arguments. Arguments are simply
conceived as the elements of a set, whose ori-
gin is not specified, partially ordered by a bi-
nary relation of defeat. Dung’s primitive no-
tion is that of argumentation framework:

Definition 1 An argumentation framework
is a pair AF =< A, R > where A is a set
of arguments, and R is a binary relation on

A, i.e. RCAXxA.

Given two arguments « and 3, (a, 3) is in the
relation R if « defeats 3, namely if accepting
« as justified prevents accepting 8. However,
this does not prevent § to defeat « too.

2.2 The Semantics

As far as semantics is concerned, argumenta-
tion approaches can be distinguished in two
classes [15], namely unique-status approaches
and multiple-status approaches. The former
class defines the defeat status of the argu-

ments in such a way that there is always ex-
actly one possible way to assign them a sta-
tus, while the multiple-status approach en-
compasses a set of possible status assignments
and considers an argument undefeated if it is
justified in all of them.

We adopt the grounded semantics [6], which
is based on the single status approach. This
seems to be more viable in a distributed envi-
ronment, since it might be difficult for several
asynchronous processes to consider different
global status assignments and subsequently to
evaluate the justification of each argument on
that basis. Given an argumentation frame-
work AF =< A, R >, the semantics is defined
inductively! by means of the following defini-
tions, taken from [12]:

Definition 2

o All arguments of A are in at level 0.

e An argument of A is in at level n + 1 iff
it is not defeated by any argument in at
level n (otherwise it is out at level n+1).

Definition 3

e An argument is undefeated (U) iff there
18 a level m such that for every n > m,
the argument is in at level n.

e An argument is defeated (D) iff there is
a level m such that for every n > m, the
argument is out at level n.

e An argument is provisionally defeated
(P) iff there is no level m such that the
argument is in at all higher levels or out
at all higher levels.

The underlying idea is that an undefeated ar-
gument is one which the agent should believe,
a defeated argument is one which it should
disbelieve, while a provisionally defeated ar-
gument is controversial, as for instance in the
case in which there is an equally believable
counter-argument.

If A is finite, we will represent an argumen-
tation framework AF =< A, R > by means

'"While the grounded semantics can be defined by
means of a fixpoint definition [6], here we introduce
it in Pollock’s style [12], since this makes easier the
description of the algorithm in Section 3.

of a directed graph, called the defeat graph
for AF, whose nodes are the arguments of A
and whose edges represent the defeat relation.
Moreover, we represent a status assignment to
the arguments of A by means of a labelled de-
feat graph?:

Definition 4 Given an argumentation
framework AF =< A,R >, where A is
finite, a labelled defeat graph for A is a
triple < A,R,L > where L is a function
L:A—{UD,P}.

Since Definition 3 determines a univocal de-
feat status for every argument in A, there is
only one labelled defeat graph enforcing the
status of defeat prescribed by the grounded
semantics: this graph is called the right la-
belled defeat graph.

2.3 Some Semantic Properties

In this subsection, we recall some properties
relevant to the defeat status of arguments,
which will be useful to devise a self-stabilizing
algorithm and to prove its correctness.

Definition 5 [12] An argument « becomes
stably in (or out) at the nth level iff

1. either n = 0 or « is out (or in, respec-
tively) at the (n — 1)st level, and

2. for all m > n, « is in (or out, respec-
tively) at the mth level.

Proposition 1 If an argument becomes sta-
bly out at the nth level then it has a defeater
which becomes stably in at the (n — 1)st level.

Proposition 2 If an argument a becomes
stably in at level 0 then it has no defeaters.
If a becomes stably in at level n, where n > 0,
then all its defeaters become stably out at
lower than n levels, and there is a defeater
B which becomes stably out at level n — 1.

An immediate consequence of the above prop-
erties is that the status assignment prescribed
by the grounded semantics satisfies some con-
straints, that we call “coherence conditions”:

2The idea of labelling the defeat graph has been
studied, with a different purpose, also in [8].

Definition 6 A labelled defeat graph <
A,R,L > is coherent iff every node a € A
satisfies the following coherence conditions:

If parents(a) = 0 then L(ca) = U.

If V8 € parents(a) L(B) = D then
L(a) = U.

If 36 € parents(a) | L(B) = U then
L(a) = D.

If 36 € parents(c) | L(B) = P and VB €
parents(a) L(B) # U then L(a) = P.

Proposition 3 A right labelled defeat graph
18 coherent.

3 Description of the Algorithm

Let us now turn to the problem of devising
a distributed self-stabilizing algorithm for the
defeat status computation of a dynamic de-
feat graph.

Given an argumentation framework AF =<
A, R >, we consider the defeat graph G for A
and we assume that each vertex of G is a se-
quential process (or node for short). For each
directed edge of R, we assume a unidirectional
communication link. Each node has a set of
local variables, including the representation of
the status assignment of the associated argu-
ment, which can be updated by the node af-
ter evaluating its local variables and the local
variables of its parents. Following the nota-
tion of [9], we will describe the program of
each node as

gt —all]o .. .og[m] — a[m]]

where each guard g[] is a boolean function of
the variables of process ¢ and the variables of
its parents, and each action (or move) a[| up-
dates the variables of process i. The symbol
o is called the nondeterminism symbol, and
separates the guarded actions: at each itera-
tion, one of the actions whose guards are true
is selected for execution, and the algorithm
terminates when all the guards are false.

A tentative approach might be arranged by
simply letting the nodal processes react to the
status of their defeaters according to the co-
herence conditions. As it can easily be ver-
ified, these conditions univocally determine

the defeat status of a node given the defeat
status of its parents, and, by Proposition 3,
they must be satisfied by the right defeat sta-
tus assignment. However it is easy to see that
this approach does not work in case of a cyclic
defeat graph: the right status assignment is
not always enforced, and the system is not
even stable, i.e. there are initial states and
particularly “unlucky” process scheduling de-
cisions, that prevent computation from termi-
nating [7].

In order to enforce the right status assignment
even in case of cyclic defeat graphs, we refine
the basic algorithm by taking into account not
just the defeat status, but also the notion of
level. According to Proposition 1, if an ar-
gument « is defeated, then it becomes stably
out at a level k, and it has a defeater § which
becomes stably in at level kK — 1: in a sense,
is the ‘cause’ for a being defeated, therefore it
will be denoted as the ‘determinant node’ for
a (of course, there can be several determinant
nodes). In case an argument « is undefeated,
by Proposition 2 either it has no defeaters, or
it becomes stably in at a level £ > 0. In the
latter case, all the defeaters of « become sta-
bly out at lower than k levels, and there is a
defeater 0 which becomes stably out at level
k — 1: again, 3 is the ‘determinant node’ for
a. We introduce for each node a a variable
d [a] aimed at representing the level at which
«a becomes stably in or stably out. If § is a
determinant node for «, d [@] has to be equal
to d[g] + 1.

According to the considerations above, in our
approach every node o« € A maintains two
state variables: the first variable, status[a] €
{D,U,P}, denotes the current defeat status
of the node, while the second variable, d [a] €
IN, is meaningful only in case status|a] €
{D, U}. Sometimes, we will indicate the state
of anode a as s[a] =[D (z) | U(z) | P].

In order to describe the algorithm, we intro-
duce, for every node «, the following nota-
tions:

PD (a) = {v € parents(«) | status[y] = D}
PU () = { € parents(«) | status [y] = U}
PP (a) = {v € parents(«) | status [y] = P}
PDy (@) = U,epD(){d D]}
PUq (a) = U'yePU(a){d [’Y]}

{Program for node i}

M1: *[(parents(z) = 0) A (s[i] # U (0))
—s[i] :==U(0)

M2:] (Cl [Z]) A (IIllIl [PUd (’L)] <
(s[i] # D (min [PUq (4)] + 1))
— s[i] := D (min[PUy (z)] +

M3: g (Ci[i]) A (min[PUq (4)] > N
(s[i] ##P) = s[i] :=P

M4: g (Ca[i]) A(s[i] #P) = s[i] =P

M5: g (Cs[i]) A (max [PDy (1)] < N)A
(s[i] # U (max [PDq (z)] + 1))
— s[i] :== U (max [PDg (¢)] + 1)

M6: 0 (Cs [i]) A (max [PDyg (i)] = N)A

] (s[i] #P) = s[i] :=P

where
Cili] = (PU(d) #0)
Coli] = (PU(d) =0) A (PP (i) # 0)
Cs[i] = (PU@1)=0)A(PP(2) =0)A
(PD (i) # 0)

Figure 1: The self-stabilizing algorithm for
computing the defeat status of arguments

In order to simplify the description, we will
use some simplifying assumptions on the
model of computation. In particular, we as-
sume that each node can examine the states of
all its parents in a single atomic step. More-
over, we assume the presence of a central
scheduler, that arbitrarily selects one of the
enabled guards and allows the execution of
the corresponding action to be completed, i.e.
it allows a move of the node, before any guard
is reevaluated. The results we obtain do not
depend on these assumptions and can be eas-
ily extended to the case of a distributed sched-
uler and non-atomic examination of the states
of the parents.

The algorithm is presented in Figure 1. In the
following, we will indicate the moves of the
algorithm as Mi, for i = 1...6, and we will
denote the corresponding guards as Gi. The
basis of the algorithm is as follows: starting
from an arbitrary initial state, each node «
continuously examines the assignments of its
parents and revises its own status according
to the following conditions, which we call su-

percoherence conditions:

e If parents(«w) = () then
sla] :==U(0)

e If PU (a) # 0 then
(min [PUq (o)] +
1f min [PUy ()] <
P otherwise

1)
<N

e If PU () = () and PP («) # 0 then
sla] :=P
e If PU (o) = PP () = 0 and PD () # 0
then
U (max [PDg ()] + 1)
sla] =< if max [PDy ()] < N

P otherwise

where N is a constant such that N > 0.

Basically, each node « updates its defeat sta-
tus as it is prescribed by the coherence condi-
tions, and it updates d [a] to the proper value
d[f] + 1, where is the node which a recog-
nizes as its determinant node. The constant
N plays a role when « belongs to a cycle of
nodes which have to be provisionally defeated
in the termination state. For the sake of clear-
ness, let us refer to the simple graph of Fig-
ure 2, corresponding to the literature para-
digmatic example called Nixon Diamond. We
suppose that in the initial state of the algo-
rithm s[a] = U(0) and s[5] = D (1). In this
state, only o can make a move: since d [§] =1
and f, which is the unique defeater of «, is
recognized as its determinant node, o updates
d[a] to 2. After this move, § has guard G2
enabled, therefore it updates d [3] to 3 by M2,
and so on. In order to stop this process, one
of the nodes has to change its defeat status
to P. In our approach, the constant N rep-
resents the maximum level at which a node
~v can become stably in or stably out. As a
consequence, v updates d [y] to a value z only
if x < N, otherwise it changes its status to P
by M3 or M6. Turning to the example above,
this yields one of the two nodes, say «, to be
assigned the status of P. As a consequence,
[changes its status to s[#] = P by M4, and
the algorithm terminates with the right defeat
status assignment.

Figure 2: The Nixon diamond example

4 Correctness and Complexity

The correctness proof of the algorithm is or-
ganized in two parts. First, we prove that the
algorithm is partially correct, namely that if
it reaches a final state (i.e. eventually any
node has its guards false and does not change
its state) then the defeat status assignment
of the nodes is the right one. Afterwards, we
prove the total correctness of the algorithm
by showing that, starting from an arbitrary
initial state, it reaches its final state in a fi-
nite amount of time. This entails the desired
self-stabilization property.

4.1 Partial Correctness

The proof of partial correctness is based on
the following lemma, whose proof (omitted
due to space limitations) can be obtained by
induction on m < N.

Lemma 1 If the algorithm terminates on a
defeat graph G =< A, R >, after termination
the following holds: for every node o € A and
for every m < N, a becomes stably in at level
m iff s[a] = U(m), and a becomes stably out
at level m iff s[a] = D (m).

Definition 7 Given a defeat graph G =<
AR >, MAXLEVEL(G) is the mazimum
level at which any argument of A becomes sta-
bly in or stably out.

As it has been shown in the informal intro-
duction to the algorithm, the constant N has
to be an upper bound to MAXLEVEL (G) in
order to be used by a provisionally defeated
node to recognize its right status. In fact, if
the choice of N is right, then the algorithm is
partially correct, as it is proved by the follow-
ing theorem.

Theorem 1 If the algorithm terminates on a
defeat graph G =< A, R >, after termination
the following holds. Let L : A — {U, D, P}

be the function such that Yo € A L(a) =
status[a|. If N > MAXLEVEL(G), then
< A, R, L > is the right labelled defeat graph
for G. Moreover, for every node o € A, if
status[a] = D or status[a] = U then « be-

comes stably out or stably in, respectively, at
level d[al].

Proof If « is defeated or undefeated, it be-
comes stably in or stably out, respectively, at
a level m. Since N > MAXLEVEL (G) > m,
by Lemma 1 the conclusion follows. If
« is provisionally defeated, by Lemma 1
status [@] # D and status[a] # U, therefore
it must be the case that status[a] = P.

The following proposition gives an upper
bound to MAXLEVEL (G), which is essential
for the partial correctness of the algorithm.

Proposition 4 For every defeat graph G =<
A, R > with n nodes, MAXLEVEL(G) < n.

Proof First, let us prove that if a node « be-
comes stably in or stably out at a level £ > 1,
then there are k different nodes besides «
which become stably in or stably out at differ-
ent levels lower than k, i.e. 3{fo, 01, .. Bk—1}
such that (; becomes stably in or stably
out at level ¢, for + = 0,...,k — 1. This
statement obviously holds for £ = 1 and can
easily be proved by induction on k, recalling
Proposition 2 and Proposition 1.

Now, since G has n nodes, there are no argu-
ments which become stably in or stably out at
alevel k£ > n, therefore MAXLEVEL (G) < n.

The results of this section are summarized by
the following theorem.

Theorem 2 Given a defeat graph G with n
nodes, if N > n — 1 then the algorithm on G
18 partially correct.

4.2 Total Correctness

In this section, we show that the algorithm is
totally correct, by proving that, starting from
an arbitrary initial state, it reaches its final
state in a finite amount of time.

In the following, we will say that a node «

makes a k-including move if a changes its
state to U (k) or D (k), and we will say that
a makes a k-removing move if it changes its
state from U (k) or D (k). We will denote by
k-move a move which is either k-including or
k-removing. It should be noticed that there
are moves which are both k-including and k-
removing, e.g. when « moves its state from
U (k) to D (k).

Definition 8 At a given instant of time, the
computation of the algorithm on a defeat
graph G =< A, R > is stable at level m iff
for any k < m there will be no more k-moves.

The proof of the following lemma is omitted
for the sake of brevity and can be obtained by
induction on k.

Lemma 2 For every k < N, the computation
becomes stable at level k in a finite amount of
time.

By the lemma above, we can immediately
prove the termination of the algorithm.

Theorem 3 The algorithm reaches its final
state in a finite amount of time.

Proof By Lemma 2, after a finite amount
of time the computation becomes stable at
level N. Then, only those nodes v such
that d[y] > N can make moves, putting
s[y] = P. As a consequence, there are at
most n possible moves by all the nodes, which
will be exhausted in a finite amount of time.

Combining the partial correctness and termi-
nation results, we have proved that our algo-
rithm is self-stabilizing.

Theorem 4 Given a defeat graph G with n
nodes, if N > n — 1 then the algorithm on G
18 correct.

4.3 Computational Complexity

In order to analyze the computational com-
plexity of the proposed algorithm, we have to
introduce the notion of round. A round refers
to a minimum execution sequence in which
each enabled action is taken at least once [9].
Since in our algorithm the guards of a node

are mutually exclusive, we define a round as
a minimum execution sequence in which each
node with an enabled guard is chosen by the
centralized scheduler at least once.

The round complexity of our algorithm turns
out to be O(N):

Proposition 5 The algorithm terminates af-
ter at most N + 1 rounds.

5 Discussion and Conclusions

While algorithmic issues for argumentation
have been investigated by means of central-
ized algorithms (e.g. [14]) or at a multi-agent
level (e.g. [10]), in this paper we have con-
sidered a finer grain of distribution, and we
have presented an argumentation framework
in which arguments are constructed by asyn-
chronous processes, which compute their own
defeat status on the basis of local informa-
tion only. We believe that our approach is a
useful starting point to put argumentation in
line with the evolution of agent architectures
towards distribution.

In a previous paper [2], we have presented a
different self-stabilizing algorithm for defeat
status computation which can handle a lim-
ited form of defeat. In the literature, two
kinds of defeaters (at least) can be found,
namely rebutting defeaters and undercutting
defeaters (see [11] for a discussion of their
meaning and importance). If one restricts at-
tention on rebutting defeaters, the defeat rela-
tion has specific properties, which have been
exploited for the definition of the algorithm
proposed in [2]. The approach proposed in
the present paper is more general, since it
does not rely on any specific notion of defeat
between arguments and it does not constrain
the topology of the defeat graph in any way.
However, the present approach is not an ‘ex-
tension’ of [2]: if the underlying argumenta-
tion system is restricted to rebutting defeat,
the more specific approach is advantageous in
two respects:

1. While the algorithm proposed in the
present paper terminates in at most N+1
rounds, which under the correctness con-
straint N > n — 1 gives a worst-case

round complexity of n rounds at least,
the algorithm of [2] terminates after at
most n rounds, where n is the number of
nodes in the defeat graph.

2. While in the present approach the cor-
rectness of the self-stabilizing algorithm
relies on a correct choice of the constant
value of N, the algorithm of [2] does not
require any ‘guess’ of this kind.

As for the second point, it can be proved that
in case the number of processes exceeds N, the
algorithm proposed in the present paper does
not assign the status of defeated or undefeated
incautiously, but it assigns a ‘cautious status’
of provisionally defeated to those arguments
it can not handle.

A prototypical implementation of the pro-
posed algorithm has been developed in C++
using a centralized scheduler. Work is cur-
rently underway to fulfill a distributed imple-
mentation, and to integrate it in a software
agent architecture based on the Active Men-
tal Entities model [1].

References

[1] P. Baroni and D. Fogli. Modeling robot
cognitive activity through active mental

entities. Robotics and Autonomous Sys-
tems, 30(4):325-349, 2000.

[2] P. Baroni and M. Giacomin. A distrib-
uted self-stabilizing algorithm for argu-
mentation. In Proc. of 2001 Interna-
tional Parallel and Distributed Process-
ing Symposium (IPDPS2001), San Fran-
cisco, CA, 2001. TEEE Press.

[3] P. Baroni, M. Giacomin, and G. Guida.
Extending abstract argumentation sys-
tems theory. Artificial Intelligence,
120(2):251-270, 2000.

[4] R. Brooks. A robust layered control sys-
tem for a mobile robot. J. of Robotics
and Automation, 2(1):14-23, 1986.

[5] S. Dolev. Self-Stabilization. MIT Press,
Cambridge, MA, 2000.

[6]

[11]

[12]

[13]

[14]

P. M. Dung. On the acceptability of
arguments and its fundamental role in
nonmonotonic reasoning, logic program-

ming, and n-person games. Artificial In-
telligence, 77(2):321-357, 1995.

M. Giacomin. Self-stabilizing distrib-
uted algorithms for defeat status com-
putation in argumentation. In Multi-
Agent Systems and Application II: 9th
ECCAI-ACAI/EASSS 2001, AEMAS
2001, HoloMAS 2001 (LNAI 2322),
pages 136-145. Springer-Verlag, Prague,
Czech Republic, 2002.

H. Jakobovits and D. Vermeir. Ro-
bust semantics for argumentation frame-

works. Journal of Logic and Computa-
tion, 9(2):215-261, 1999.

M. H. Karaata and F. Al-Anzi. A
dynamic self-stabilizing algorithm for
finding strongly connected components.
In Proc. of 8th ACM Symposium on
Principles of Distributed Computing
(PODCY9), page 276, Atlanta, GA, 1999.

S. Parsons, C. Sierra, and N. Jennings.
Agents that reason and negotiate by ar-
guing. Journal of Logic and Computa-
tion, 8(3):261-292, 1998.

J. L. Pollock. Defeasible reasoning. Cog-
nitive Science, 11(4):481-518, 1987.

J. L. Pollock. How to reason defeasibly.
Artificial Intelligence, 57(1):1-42, 1992.

J. L. Pollock. Cognitive Carpentry: A
Blueprint for How to Build a Person.
MIT Press, Cambridge, MA, 1995.

H. Prakken. Dialectical proof theory for
defeasible argumentation with defeasible
priorities (preliminary report). In Proc.
of 4th ModelAge Workshop on Formal
Model of Agent (LNAI 1760), pages 202
215. Springer-Verlag, 1998.

H. Prakken and G. A. W. Vreeswijk.
Logics for defeasible argumentation. In
Handbook of Philosophical Logic. Kluwer
Academic Publishers, Dordrecht, second
edition. To appear.

