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Abstract

This paper presents a procedure for

transforming an imprecise probabil-

ity assessment about an arbitrary �-

nite set of events into a possibility

assignment on the same set. To this

purpose, a notion of partial possibil-

ity measure is introduced and char-

acterized. These results represent

a contribution to the more general

research goal of de�ning an uncer-

tainty interchange format and the

relevant transformation procedures

to be used in multi-agent systems.

Keywords: Partial possibility, Im-

precise probabilities, Multi-agent

systems, Uncertainty transforma-

tions.

1 Introduction

De�ning transformation procedures between

uncertainty representation formalisms is a

key issue for enabling interoperability among

heterogeneous uncertain reasoning systems,

adopting di�erent approaches to uncertainty.

In particular, interoperability is a fundamen-

tal requirement in the development of multi-

agent systems, namely systems composed by

a set of autonomous software entities (called

agents) interacting among them. A typical

application scenario is a virtual marketplace,

where independently owned software agents

automate some of the activities related to the

buying and selling of goods [8].

While consolidated proposals exist for inter-

agent exchange of certain information (e.g.

the Knowledge Interchange Format proposal

of standard [7]), a relatively limited atten-

tion has been given in the literature to inter-

agent exchange of uncertain information, in

spite of its potential relevance in many appli-

cations. In [10] attention is paid in partic-

ular to the reuse and interoperability of ex-

isting expert systems, analyzing a family of

transformations between the certainty factor

model adopted in MYCIN and the subjec-

tive Bayesian model adopted in PROSPEC-

TOR. We adopted a broader perspective in

[1], where the problem of de�ning a suÆ-

ciently general uncertainty interchange for-

mat was considered. We identi�ed coherent

imprecise probability theory [12] as a suitable

basis for the de�nition of an interchange for-

mat, due to its ability to encompass several

well known theories (including precise proba-

bility, belief functions, and possibility) as spe-

cial cases, and proposed transformation pro-

cedures from coherent imprecise probabilities

into each of the three formalisms mentioned

above. In [1] it was assumed that all agents

share a common �nite universe of discourse U

and that the events about which they formu-

late their uncertainty judgements are taken

from the powerset }(U) of U . In other words,

U = fe1; : : : ; emg is a �nite partition made

up of atoms (pairwise disjoint non-impossible

events, whose logical sum is the certain event


 = e1 _ : : : _ em). Transformation pro-

cedures were proposed for the cases where

the information exchange concerns either just

one event or the whole }(U) � f;;
g. How-

ever, a more general (and practical) case to

be dealt with concerns the exchange of uncer-

tainty quanti�cations about any set of events



an agent considers interesting. This has,

in particular, obvious advantages concerning

the volume of information exchanged and the

computational load involved by the trans-

formation. Transformations between partial

rather than complete uncertainty quanti�ca-

tion assignments are therefore required. Co-

herent imprecise probabilities are de�ned on

arbitrary sets of events (see section 3) and

are therefore well-suited for handling also this

case. Most well-known uncertainty theories,

instead, require an uncertainty quanti�cation

assignment to be de�ned on an algebra of

events. In order to enable partial information

exchanges it is therefore necessary:

1. to provide a characterization of partial

uncertainty assignments within each of

the considered theories;

2. to de�ne procedures for transforming

an imprecise probability assignment into

each kind of partial assignment in 1.

This paper aims at carrying out these steps for

the case of possibility theory, which deserves

a special attention for two reasons:

� as to our knowledge, a characterization

of partial possibilities has not been pro-

vided yet in the literature (while, for in-

stance, partial belief functions have been

considered in [11]);

� as pointed out in [1], de�ning transfor-

mation procedures from imprecise prob-

ability into possibility is, in general, more

critical than for other theories, due to

the remarkable expressiveness gap the

transformation has to cover and because

some intuitively appealing requirements

for these procedures turn out to be con-

icting.

The paper is organized as follows. Section 2

provides a de�nition and a characterization

of partial possibilities. After recalling the no-

tion of coherent imprecise probability, section

3 introduces and discusses the criteria and as-

sumptions underlying the procedure we pro-

pose and describe in detail in section 4. Fi-

nally, section 5 concludes the paper.

2 Partial possibilities

As well known (e.g. see [4]), a possibility

measure � on the powerset }(U) of a �-

nite partition U = fe1; : : : ; emg can be de-

�ned by assigning a possibility distribution

�(�) : U ! [0; 1]. In the following we will

consider only normal distributions, i.e. dis-

tributions such that 9ej 2 U : �(ej) = 1.

Then, 8E 2 }(U), � is given by:

�(E) = max
ei)E

f�(ei)g (1)

with the assumption that �(;) = 0.

Suppose now that a mapping � : INTEV !
[0; 1] is given on the arbitrary �nite set of

events INTEV = fE1; : : : ; Eng (to avoid

trivial situations, we assume Ei 6= ;; Ei 6=

; i = 1; : : : ; n). The set INTEV is assumed

to include, in practical contexts, the events

which actually are of interest for a software

agent: in most cases, this set will not coin-

cide with that of all non-trivial events of the

powerset of any partition.

It would therefore be useful to de�ne a no-

tion of partial possibility to be applied to the

partial uncertainty evaluation � on INTEV .

Consider for this that the events of INTEV

may or may not be de�ned starting from an

underlying partition U , but in any case the

partition UG generated by E1; : : : ; En can be

obtained as the set of all logical products

E0

1 ^ : : : ^ E
0

n, where each E0

i
is alternatively

replaced by either Ei or its complement E
c

i
.

Those logical products that are not impossi-

ble constitute the atoms of UG. Partition UG
satis�es the following properties:

(i) any event Ei 2 INTEV is a logical sum

of some atoms of the partition (those im-

plying Ei);

(ii) UG is the coarsest partition with the

property (i).

We recall that a partition U is coarser than U 0

(or, equivalently, U 0 is more re�ned than U)

i� every atom of U is a logical sum of atoms

of U 0. Clearly, property (i) is useful to relate

partial to ordinary possibilities, as is done in

the following de�nition.



De�nition 1 � : INTEV ! [0; 1] is a par-

tial possibility (on INTEV ) i� there exists

a possibility measure � : }(U) ! [0; 1], such

that 8Ei 2 INTEV;�(Ei) = �(Ei), where

}(U) is the powerset of a �nite partition U

satisfying property (i) above.

The next lemma ensures that the concept of

partial possibility is well-de�ned, in the sense

that it does not depend on the choice of U

within the class of the �nite partitions having

the property (i). In particular, one may refer

to UG, i.e. the coarsest of these partitions.

Lemma 1 If � : INTEV ! [0; 1] is not a

partial possibility with respect to a possibil-

ity de�ned on }(UG), then it is not a partial

possibility even referring to any possibility de-

�ned on }(U), where U is a �nite partition

more re�ned than UG.

Proof. We equivalently show that whenever

� is the restriction on INTEV of a possibility

measure � on }(U), then it is also the restric-

tion of a possibility measure �0 on }(UG). In

fact, let � be a partial possibility with respect

to �, and let � be the underlying possibil-

ity distribution de�ned on U = f!1; : : : ; !tg.
Any event of INTEV is a logical sum of

atoms of UG = fe1; : : : ; emg: consider one of
them, let it be Ei = e1_ : : :_ek; k < m. Then

�(Ei) = max
!h)Ei

f�(!h)g = (2)

max

�
max
!h)e1

f�(!h)g; : : : ; max
!h)ek

f�(!h)g

�

Put �0(ei) = max!h)ei
f�(!h)g to assign pos-

sibility values to the atoms e1; : : : ; ek of UG.

By considering all the events in INTEV , this

assignment can be easily extended to other

atoms to obtain a complete possibility distri-

bution �0 on UG, and, applying (1), a pos-

sibility measure �0 on }(UG). Clearly, by

construction we have �(Ei) = �0(Ei);8Ei 2
INTEV , i.e. � is a partial possibility with

respect to UG. �

The next proposition gives a simple answer

to the problem of establishing whether a given

uncertainty assessment � on INTEV is a par-

tial possibility. For ease of notation, suppose

that 1 � �(E1) � : : : � �(En) � 0.

Further let v1 > : : : > vm;m � 1, be the dis-

tinct values assumed by �(�), and de�ne for

j = 1; : : : ;m:

A�
j

=
_

(Ei : �(Ei) = vj) (3)

Aj =

m_
k=j

A�
k

(4)

Am+1 = ; (5)

Proposition 1 An uncertainty assessment

� : INTEV ! [0; 1] is a partial possibility

i� both of the following conditions hold:

�(E1) = 1 _A1 6= 
 (6)

8j;8Ei : �(Ei) = vj;

9ek 2 UG : ek ) Ei ^A
c

j+1 (7)

Proof. Suppose �rst that both (6) and (7)

hold. A possibility distribution function �(�)
can be assigned on UG as follows:

1. for j = 1; : : : ;m, for every Ei : �(Ei) =

vj select one ek 2 UG : ek ) Ei ^ A
c

j+1

and put �(ek) = �(Ei);

2. if �(E1) < 1, by (6) it is A1 = E1 _ : : : _
En 6= 
, and we have e0 = Ec

1^: : :^E
c

n 6=
;; e0 2 UG. Put then �(e0) = 1;

3. assign �(�) = 0 to all the remaining atoms

of UG to complete the de�nition of the

possibility distribution � on UG.

Then the possibility measure � obtained

from � applying (1) is such that �(Ei) =

�(Ei);8Ei 2 INTEV .

Conversely, suppose now that either (6) or (7)

do not hold.

If (6) is false, it is �(E1) < 1 ^ A1 = 
.

Hence every atom of UG implies (at least) one

Ei 2 INTEV , and whatever possibility dis-

tribution � is assigned on UG, this holds in

particular for every ej satisfying the normal-

ity condition �(ej) = 1. Therefore, by (1)

at least one Ei 2 INTEV should be given

�(Ei) = 1 thus yielding �(Ei) 6= �(Ei).

If (7) does not hold, this means that

9Ei;�(Ei) = vj; j < m such that Ei^A
c

j+1
=

;, i.e. Ei ) Aj+1. Consider now any possi-

bility measure � on }(UG) such that �(Ei) =



�(Ei). By (1), we have that 9ek 2 UG :

ek ) Ei; �(ek) = �(Ei). However, since

Ei ) Aj+1, we have that 8ek ) Ei;9Es 2
INTEV : ek ) Es;�(Es) < �(Ei). This

entails that it is not possible to obtain a pos-

sibility measure � with �(Ei) = �(Ei), with-

out having some Es such that �(Es) 6= �(Es).

Therefore, � is not a partial possibility. �

Example 1. Let U = fe1; : : : ; e9g,
INTEV = fE1; E2; E3; E4g, where E1 = e1_
e2_e3; E2 = e3_e4_e5_e6; E3 = e5_e6_e7;
E4 = e2 _ e3 _ e4 _ e5 _ e8. Any assignment �
on INTEV such that 1 > �(E1) > �(E2) >

�(E3) > �(E4) > 0 can not be a partial pos-

sibility, because (7) does not hold for j = 2:

A�2 = E2, A3 = E3 _ E4, every ek 2 U imply-

ing E2 implies also E3 _ E4. As a matter of

fact, because of (1) any partial possibility on

INTEV must assign to either E3 or E4 the

same or a higher value than the one it assigns

to E2.

3 From imprecise probabilities to

partial possibilities: criteria and

constraints

We refer to the theory of coherent imprecise

probabilities developed in [12]. It is assumed

that the following conjugacy relation holds

between lower (P ) and upper (P ) probabil-

ities: P (E) = 1 � P (Ec). We can therefore

restrict our attention to lower or, as in our

case, upper probabilities only.

Coherent upper probabilities are de�ned in

[12] as follows: given an arbitrary (�nite or

not) set of events S, P (�) is a coherent upper

probability on S i�,

8m;8E0; : : : ; Em 2 S;8si � 0; i = 0; : : : ;m,

de�ning I(E) as the indicator of E (I(E) = 1

if E is true, I(E) = 0 if E is false) and putting

G =
P

m

i=1
si[P (Ei) � I(Ei)] � s0[P (E0) �

I(E0)],

it is true that maxG � 0.

Coherent upper (and lower) probabilities have

a clear behavioral interpretation in terms of

betting schemes [12] and encompass several

existing theories as special cases [13]. In par-

ticular, a possibility measure is a coherent up-

per probability.

As pointed out in [1], the problem of

transforming an imprecise probability into a

less expressive uncertainty formalism has no

throughout accepted solution: every trans-

formation mechanism involves some arbitrari-

ness and is questionable in some respect. A

similar remark was given in [6] for precise

probability/possibility transformations. Here

we focus on the transformation from an upper

probability assignment P (�) into a partial pos-
sibility �(�), both de�ned on the same set of

interesting events INTEV = fE1; : : : ; Eng.
Two main transformation criteria can be iden-

ti�ed (see [1] for more general considerations):

� consistency: since possibility is an intrin-

sically less precise measure, the resulting

�(�) should not be more informative than
the original P (�);

� similarity: the resulting �(�) should dif-

fer as little as possible from P (�).

Operationally, the consistency criterion is ap-

plied imposing that 8Ei 2 INTEV;�(Ei) �
P (Ei). This is a straightforward extension of

the consistency principle proposed in [3], [6].

As for the similarity criterion, two kinds of

similarity can be considered:

� ordinal similarity: the credibility order

induced on events by P (�) should be pre-

served by �(�);

� quantitative similarity: some distance be-

tween �(�) and P (�) should be minimized.

Ordinal similarity is related to the prefer-

ence preservation principle [6], while quanti-

tative similarity aims at minimizing the dis-

tortion introduced by the transformation. As

discussed in [1], these criteria are inherently

conicting: the constraints due to preference

preservation are often very strong and may

signi�cantly widen the imprecision gap be-

tween �(�) and P (�). For this reason, no

transformation procedure appears to be opti-

mal in an absolute sense, since it can be rated

di�erently, depending on the relative impor-

tance one ascribes to conicting criteria.

The procedure we describe in the next section

ensures the consistency of transformation re-



sult and privileges ordinal rather than quan-

titative similarity.

A motivation for preferring ordinal similarity

is given by the basically ordinal nature of pos-

sibility measures. As stated in [5]: \Possibil-

ity and necessity measures are set-functions

that can provide simple ordinal representa-

tions of graded belief. Their particular char-

acter lies in their ordinal nature". Hence, it

is reasonable to assume that a software agent

adopting possibility theory as its uncertainty

model is mainly interested in the credibility

ordering associated with other agents' evalu-

ations, and would possibly accept relatively

loose approximations of the sender's numeri-

cal evaluation.

From an operational perspective, computa-

tionally simpler procedures should be pre-

ferred. In our case, this also means trying

to operate directly on the events of INTEV ,

without enumerating and explicitly consider-

ing all the atoms of UG. The proposed proce-

dure takes also this aspect into account.

4 A transformation procedure

based on ordinal similarity

4.1 Procedure de�nition

Given a coherent upper probability P (�) on

INTEV = fE1; : : : ; Eng, we de�ne a proce-

dure producing a partial possibility �(�) such
that:

8Ei 2 INTEV;

�(Ei) � P (Ei); (8)

8Ei; Ej 2 INTEV; i 6= j;

P (Ei) = P (Ej)) �(Ei) = �(Ej); (9)

P (Ei) > P (Ej)) �(Ei) � �(Ej): (10)

Condition (8) enforces the already mentioned

consistency principle, while (9) and (10) im-

pose a weak form of the preference preserva-

tion principle. Among the partial possibili-

ties respecting the above conditions, it would

be desirable to �nd one minimizing the addi-

tional imprecision, which, as far as (8) holds,

can be measured by:

X
Ei2INTEV

(�(Ei)� P (Ei)): (11)

As in section 2, it is assumed that P (E1) �
: : : � P (En); further, A

�

j
and Aj are de�ned

by (3) and (4). Moreover all the implica-

tion and incompatibility relations among the

events of INTEV are assumed to be known,

as well as whether _(Ei : Ei 2 INTEV ) = 
.

The procedure we propose is based on Propo-

sition 1. It �rst checks whether conditions (6)

and (7) are satis�ed. In Particular, condition

(7), involving atoms of the generated parti-

tion, can be checked exploiting only informa-

tion about implication and incompatibility, by

considering its negation, namely:

9j;9Ei : P (Ei) = vj; Ei ^A
c

j+1 = ; (12)

or equivalently

9j;9Ei : P (Ei) = vj ; Ei ) A�
j
^Aj+1: (13)

If P (�) already satis�es both (6) and (7),

the procedure terminates by putting �(Ei) =

P (Ei);8Ei 2 INTEV . Otherwise the pro-

cedure enforces (6) and/or (7). Condition (6)

can easily be adjusted, if necessary, by putting

�(Ei) = 1;8Ei : P (Ei) = v1; this also com-

plies with (9). The modi�ed assignment is

processed further if condition (7) is not satis-

�ed, i.e. if the set NOTSAT of events satis-

fying condition (13) is not empty. The pro-

cedure loops over the events of NOTSAT ,

considered in order of increasing upper prob-

ability (the choice for this ordering is moti-

vated in the next subsection, comment to Step

9). Each loop iteration deals with one event

ECAND 2 NOTSAT and modi�es some as-

signments in order to enforce (7) for ECAND,

while also taking into account the require-

ments (8) � (10). Then the procedure recom-

putes all A�
j
; Aj , and NOTSAT , referring to

the modi�ed assignment and selects the next

event to be adjusted (if any). The procedure

terminates when NOTSAT is empty.

A pseudo-code speci�cation of the complete

procedure is the following:

Step 1. 8Ei 2 INTEV put �(Ei) := P (Ei);

Step 2. if (_(Ei : Ei 2 INTEV ) = 
 ^
�(E1) 6= 1)

then 8Ei : �(Ei) = �(E1) put �(Ei) := 1;

BEGIN MAIN LOOP



Step 3. Determine the values v1 > : : : >

vm;m � 1, of the current assignments �(Ei);

for j = 1; : : : ;m

put A�
j
:=
W
(Ei : �(Ei) = vj);

for j = 1; : : : ;m

put Aj :=
W
m

k=j
A�
k
;

put Am+1 := ;;

Step 4. Determine the set NOTSAT = fEi

such that 9j : �(Ei) = vj ; Ei ) A�
j
^Aj+1g;

if NOTSAT = ; then EXIT else

Step 5. Select ECAND 2 NOTSAT :

�(ECAND) � �(Ei);8Ei 2 NOTSAT ;

Let h be such that

�(ECAND) = vh; ECAND ) A�
h
^Ah+1;

Step 6. Determine the set

IMPLIED<(ECAND) = fI1; : : : ; Ikg; k � 1,

where each Ij =
W
Er is a minimal (with

respect to implication) sum of events of

INTEV such that �(Er) < �(ECAND);8Er

in the sum, and ECAND ) Ij ) Ah+1;

Step 7. 8Ij 2 IMPLIED<(ECAND) se-

lect among the events Er forming Ij an event

EMAXj : �(EMAXj) � �(Er)^P (EMAXj) �
P (Er);8Er;

Step 8. put SMAX :=
S
j=1;:::;k

fEMAXjg;
put �BASE := minj(�(EMAXj));

put BASES := fEb 2 SMAX : �(Eb) =

�BASEg;

Step 9. 8El 2 INTEV : �BASE < �(El) <

�(ECAND) put �(El) := �(ECAND);

8El 2 INTEV : �BASE = �(El)

if (9Eb 2 BASES : P (El) � P (Eb))

then put �(El) := �(ECAND);

Step 10. goto Step 3.

END MAIN LOOP

4.2 Step by step explanation

Step 1 initializes the values of �, step 2 checks

condition (6) and enforces its satisfaction if

needed. Then the main loop begins. Step 3

computes the events A�
j
and Aj used to check

condition (7) in step 4: if NOTSAT is empty,

� is a partial possibility and the procedure ex-

its, otherwise steps 5 � 10 are executed.

Step 5 selects in NOTSAT an event ECAND

with minimal value of �. Step 6: since

�(ECAND) = vh and ECAND implies Ah+1,

ECAND must imply at least one sum _Er of

events such that �(Er) < �(ECAND);8Er.

One such a sum is said to be minimal if any

of its events Er is necessary for the implica-

tion to hold. The set IMPLIED<(ECAND)

is therefore not empty and includes all such

minimal sums: it can be derived from the im-

plication relations among events, assumed to

be known. Step 7 selects from each minimal

sum Ij an event EMAXj with the highest cur-

rent value of � and also the highest original

value of P (events with di�erent initial val-

ues of P may have the same value of � at

a given iteration, due to adjustments carried

out in previous iterations). Step 8 selects the

set BASES of events whose � value is mini-

mal among all EMAXj chosen in step 7.

Step 9 then enforces the satisfaction of con-

dition (7) for ECAND by necessarily increas-

ing the value associated to each EMAXj from

the current �(EMAXj) to �(ECAND). In this

way, for each Ij at least an event (EMAXj)

is \subtracted" from Ah+1, thus also remov-

ing ECAND from NOTSAT . In order to sat-

isfy conditions (9) and (10) we also have to

increase the value of � for all El whose �

value is between any �(EMAXj) (included)

and �(ECAND), i.e. those events that would

be unduly surpassed by some EMAXj in the

ordering. The required modi�cations are ob-

tained by increasing all the � values strictly

included between �BASE and �(ECAND) for

any El 2 INTEV .

The events El such that �BASE = �(El) re-

quire an ad hoc treatment. The if clause re-

ferring to the comparison of the initial up-

per probability values is necessarily true for

each El in the �rst loop iteration. However, it

may be not so in subsequent iterations, when

it may be the case that two events currently

featuring the same value of � had originally

di�erent values of P . For this reason, the if

clause checks that the adjustments for the val-

ues of � are actually required by ordinal sim-

ilarity with respect to the initial assignment

P . In this way \false equalities", i.e. equali-

ties of the values of � that do not correspond

to equalities of the values of P , do not give

rise to unnecessary additional imprecision.



The procedure then goes back to step 3.

It has to be noted that Step 9 is based on the

following consideration: since ECAND has the

lowest � value in NOTSAT , 8El : �(El) <

�(ECAND), it ensues that El =2 NOTSAT .

Therefore, all such El satisfy condition (7),

i.e. there is at least an atom ek 2 UG which

impliesEl without implying any event Ei with

�(Ei) < �(El). This enables us to increase

�(El) by increasing an underlying value �(ek)

without a�ecting any event Ei with a lower

value of �. Note that operationally this can

be made without explicitly identifying ek and

therefore without deriving UG, since it suÆces

to know that such an ek exists.

Example 2. To make a simple application

of the procedure, we transform the assign-

ment � in Example 1 into a partial possi-

bility. In step 1, we put �(Ei) := �(Ei),

the if clause in step 2 is not operating, step

3 determines A�
j
= Ej ; j = 1; : : : ; 4, and all

Aj , including A3 = E3 _ E4. As A�2 ^ A3 =

E2, NOTSAT = fE2g is found at step 4.

ECAND = E2, I1 = E3 _ E4, EMAX1 = E3,

SMAX = BASES = fE3g, �BASE = �(E3)

are determined in steps 5�8. At step 9, no

event El satis�es the strict inequalities in the

�rst line, so the corresponding command is

ine�ective, whilst the if clause is satis�ed for

El = Eb = E3, giving �(E3) := �(E2). While

recomputing A�
j
; Aj ; j = 1; 2; 3, the second it-

eration gives now A�2 = E2_E3, A3 = E4, and

consequently NOTSAT = ;. The current �

is a partial possibility.

4.3 Procedure properties

In this section we briey discuss the termina-

tion, event selection ordering, and additional

imprecision properties of the procedure.

The procedure terminates when NOTSAT =

;, i.e. when the current assignment � satis-

�es condition (7). When it does so, � satis�es

also (6), by step 2, and is therefore a partial

possibility on INTEV by Proposition 1.

To see that termination is guaranteed, note

that at each iteration of the main loop at

least one event of INTEV is assigned a higher

� value, which is chosen among the numbers

v1; : : : ; vm�1, whilst no � assignment is ever

lowered. This is operated by step 9, from

which it appears that � is raised at least for

the event(s) in BASES. It follows that one

iteration of the main loop modi�es the events

A�
j
by moving at least one event of INTEV

from the event, say A�s, it implied at the be-

ginning of the main loop to an event, say

A�
r
, recomputed at step 3 in the next itera-

tion and formed by events of INTEV hav-

ing a common, higher assignment of �. Sub-

sequent iterations will progressively tend to

empty those A�
j
formed by events with lower

assignments of �, possibly reducing the num-

ber m of di�erent A�
j
. Unless it stops before,

the procedure will, by necessity, progressively

decrease m: in the worst case it will arrive

at m = 1, A�1 = _(Ei : Ei 2 INTEV ). At

this point the procedure terminates, because

NOTSAT is necessarily empty.

As for event selection, the main loop itera-

tions examine the events ECAND in increas-

ing order of �: this ordering is necessary to

guarantee that the procedure is well-founded

without requiring to explicitly deal with the

generated partition UG, as explained in the

comment to step 9 above. The procedure does

not specify how to select ECAND when some

events form a tie, i.e. have the same mini-

mal value of � within NOTSAT . It can be

shown however that the selection order for

tied events has no inuence on the �nal re-

sult. In particular, any of these selection or-

ders has the same e�ect as choosing as �rst

event within the tie one which gives rise to

the minimal value of �BASE . Such a selec-

tion would remove all the events in the tie

from NOTSAT in a single iteration.

Given the above mentioned ordering, at each

iteration an adjustment for each Ij identi�ed

in step 6 is necessary to obtain a partial possi-

bility. Any such adjustment adds imprecision,

since there is an increase of � with respect to

P for at least an event. The procedure at-

tempts to minimize such an addition, since it

selects for each Ij the best choice, i.e. the

event EMAXj with the highest previous as-

signment. Among these locally best choices,

the minimal value �BASE (i.e. the worst from

the viewpoint of imprecision addition) is used

in step 9, but this is imposed by (9) and (10).



5 Conclusions

In this paper we have introduced and charac-

terized a notion of partial possibility measure

assigned on a generic �nite set of events and

proposed a procedure for transforming a co-

herent upper probability into a partial possi-

bility. The procedure is based on the consis-

tency and ordinal similarity criteria and fea-

tures the computationally advantageous prop-

erty of not requiring the explicit derivation of

a complete generated partition. Moreover it

tends to minimize the additional imprecision

introduced during the transformation, as far

as this is allowed by the above main crite-

ria. This work generalizes the framework of

[1], that was limited to consider all events ob-

tained from a given partition, and is related

to previous results concerning precise proba-

bility/possibility transformations [6] and in-

terval probability/possibility transformations

[2]. In particular, by operating directly on

atomic events, [2] deals with complete pos-

sibility distributions only. Future work in-

cludes the study and comparison of alterna-

tive transformation procedures based on dif-

ferent criteria, such as quantitative similarity

and uncertainty preservation [9]. To employ

the latter criterion, a function measuring the

uncertainty of any imprecise probability as-

sessment should be introduced. An interest-

ing open problem is whether this can be done

following the way discussed in [9] for the case

of belief functions.
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