
A DISTRIBUTED ARCHITECTURE FOR CONTROL OF
AUTONOMOUS MOBILE ROBOTS

P. Baroni*, G. Guida*, S. Mussi**, and A. Vetturi*

*Università di Brescia, Dipartimento di Elettronica per l'Automazione
Via Branze 38, I-25123 Brescia, Italy

phone: +39 30 3715455; fax: +39 30 380014; e-mail: {baroni, guida}@bsing.ing.unibs.it

**CILEA, Consorzio Interuniversitario Lombardo per l'Elaborazione Automatica
Via R. Sanzio 4, I - 20090 Segrate (MI), Italy

phone: +39 2 26922434; fax: +39 2 2135520; e-mail: mussi@icil64.cilea.it

Abstract - The problem of controlling autonomous mobile robots (AMR's) in real world environments
has received great attention in recent years. In order to face the high complexity of this problem, a
recent research trend involves the use of distributed architectures for designing and implementing robot
controllers. In this paper we present a novel distributed architecture for control of autonomous mobile
robots. The proposed architecture includes many autonomous agents able to communicate and to
cooperate in order to achieve the global problem solution. Each agent is specialized in a facet of the
AMR control problem and no agent has enough information and capabilities to solve the entire
problem. Agent are decentralized and loosely coupled, and their cooperation is based on a task-
sharing approach. An example of application of the proposed architecture to an instance of the homing
problem is given.

1. INTRODUCTION

The problem of controlling autonomous mobile robots
(AMR's) in real world environments has received great
attention in recent years. The features of an AMR
depend on the particular type of task it is devoted to (for
example, exploration of indoor or outdoor environments,
production tasks in an automated factory, military
missions, space or marine operations, etc.).
Nevertheless, it is possible to specify some general
requirements which are common to any AMR carrying
out a particular task and interacting with the external
environment [4], [14]. These include:
• the capability of considering several, different,

possibly conflicting goals;
• real-time responsiveness to changes in the

environment;
• robustness, i.e. the capability of tolerating (at a

certain extent) hardware or software faults;
• the capability of exploiting data coming from a high

number of sensors in order to achieve a sufficiently
detailed and certain perception of the external world;

• the capability of selecting the most suitable strategy
for movement and operation, given the current
features of the environment.

Most approaches to AMR control have been developed
adopting a general purpose functional decomposition
into sensing, planning, and acting. There is a vast
literature on the traditional sense-plan-act approach and

its variations (see for example [3], [20], [17]). In an
alternative approach proposed by Brooks [5], the AMR
control problem is faced adopting special-purpose task-
achieving decompositions (often called behaviours).
Many researchers have proposed systems which
integrate these two approaches [1], [13], [16]. Still
another approach to AMR control involves the use of
Distributed Artificial Intelligence architectures, like
blackboard architectures [7]. Such architectures are
constituted of a number of different independent
modules (called knowledge sources), each one able to
deal with a small part of the overall control problem. The
knowledge sources share a common, global working
memory called blackboard, where input data and
intermediate results about a specific control problem are
collected (for example, sensor data, partial results
obtained from specific knowledge sources, etc.). A
scheduler determine the overall operation of the system,
deciding, on the basis of the current content of the
blackboard and of a given problem-solving strategy, the
order of activation of the knowledge sources in front of
a specific control problem. An example of application of
this approach is the Ground Surveillance Robot (GSR)
[11], [12].
All the above mentioned approaches are oriented
towards a decomposition and distribution of the overall
AMR control problem between a number of different
modules, provided with knowledge and capabilities
necessary to solve a portion of the problem at hand.
Quoting Chandrasekaran [6], "decomposition of

processing is an absolutely basic strategy for
controlling the complexity" of the control problem for
autonomous mobile systems. However, in all these
approaches, the control of module activity is (even if in
different ways) centralized. When many different goals
or several possible situations must be simultaneously
considered, the centralized controller becomes a
bottleneck. Moreover, the centralized controller makes
the above approaches brittle and poorly appropriate to
deal with real-size problems, typically large and complex.
This paper proposes a novel concept of distributed
architecture that, exploiting both task distribution and
control distribution, can overcome these limitations. The
paper is organized as follows. Section 2 reviews the
concept of distributed problem solving. Section 3
describes the proposed distributed architecture and
comments on its main features. Section 4 illustrates a
simple application of the proposed architecture in the
solution of a particular instance of the navigation
problem, namely the homing problem. Finally, section 5
summarizes the main advantages of the proposed
approach, and suggests directions for future research.

2. DISTRIBUTED PROBLEM SOLVING:
A DEFINITION

A simple and clear definition of distributed problem
solving (DPS) is the following: DPS is a cooperative
activity of a group of decentralized and loosely coupled
modules called agents [19]. Agents cooperate in the
sense that no one of them has sufficient information and
capabilities to solve the entire problem: sharing of
information and cooperation are necessary to allow the
group as a whole to produce a solution. Agents are
decentralized in the sense that both control and data are
logically and often physically distributed: there is
neither global control, nor global data storage. The
agents are loosely coupled in the sense that individual
agents spend most of their processing time in
computation rather than in communication.

Distributed problem solvers offer, in comparison to
centralized or monolithic approaches, several
advantages, including: speed, reliability, extendibility,
and ability to tolerate uncertain data and knowledge.
Therefore, DPS naturally matches some of the main
requirements of AMR's listed in section 1.

3. THE PROPOSED ARCHITECTURE

3.1 General organization

From a general point of view, our architecture is
constituted - according to the general DPS concept
defined in section 2. - by a collection of agents, able to
solve a portion of the AMR control problem, and

capable of cooperating according to a task-sharing
approach. In this approach, when an agent is faced with
a task too large or too complex, it may request
assistance to other agents available in the architecture.
It first decomposes the task at hand into more
manageable subtasks and then it attempts to find other
agents with the appropriate competence to handle them.
Agents are supposed to be benevolent [9], [15], i.e. each
agent is always available to cooperate to the global
problem-solving activity by carrying out the assigned
tasks.
Each agent has its own local problem-solving capability;
it can autonomously reason on some part of the problem
and can produce partial solutions. To carry out its job,
an agent may resort to other agents, which are asked to
solve subproblems it can not solve directly. Therefore,
the global problem-solving task is performed
incrementally, through cooperation among the agents.
In order to organize agents in a disciplined and effective
way, on top of agents, the higher-level concept of area
has been defined. An area is a collection of agents
sharing the same competence domain. Areas are
therefore obtained through a partitioning of the agent
set, according to specific criteria depending on the
application domain considered. Each agent belongs to
one and only one area, the agents belonging to the same
area are called the near agents. Areas have no specific
problem solving capabilities; they only have an
intermediary role in the management of communication -
and therefore cooperation - among agents. Areas
analyze requests arriving from other areas and forward
them to the appropriate near agents, and analyze
requests generated by near agents and appropriately
address them to the relevant areas. Thus, agents can
directly interact only with near agents; interaction with
the other agents occurs solely through areas. The active
role of an area has been modeled explicitly: each area
has an associated management mechanism, called the
area manager. For all the agents of a given area, the
area manager of their area is called the near area
manager.

The above concepts are illustrated in Figure 1., with
reference to a fragment of the architecture developed for
the test-case discussed in section 4.

3.2 Agents

According to the task-sharing model of cooperation
introduced above, an agent must be able to carry out
four functions namely:
• decomposing large or complex problems into simpler

subproblems (subproblems require for their solution
fewer resources than the original problem);

• allocating the subproblems to suitable near agents
or, if no appropriate near specialist is found, to the
near area manager;

• solving subproblems belonging to its specific
competence domain;

• communicating with near agents and with the area
manager either for requesting their assistance or for
transferring the (partial) results obtained.

In order to implement these functions, the internal
structure of an agent has been organized into three
modules, namely: the kernel, the mantle, and the shell.
The kernel is in charge of performing the specific
problem-solving tasks the agent is capable of.
It contains the agent's own problem-solver, be it a
procedure, a knowledge base coupled with an
appropriate reasoning mechanisms, or any other
problem-solving device. The internal structure and
organization of the kernel is heavily dependent on the
type of problems the agent is specialized to solve and
on the problem-solving paradigm it is based upon. For
its problem-solving activity, the kernel uses problem
knowledge. Both the structure and the knowledge used
by the kernel are totally domain dependent and different
for each agent.
The mantle is in charge of two tasks. First, it identifies
the preconditions that have to be satisfied for obtaining
a meaningful solution of the problem at hand, and
evaluates whether they are satisfied. In fact, in general, a
problem can be successfully solved only if specific
preconditions are satisfied. For instance, it is
meaningless to execute a statistical procedure if only a

too small set of input data is available; the results would
not be significant. This task of the mantle is therefore
aimed at avoiding useless effort spent at the solution of
a problem that can not be solved appropriately. To this
purpose, the mantle uses condition knowledge, that
states both general principles and specific rules for
identifying and verifying the preconditions for the
solution of a problem within the competence domain of
the agent.
Second, the mantle is in charge of implementing the
fundamental problem decomposition strategy that
governs the operation of every agent. It examines an
incoming problem and decomposes it into subproblems,
and, in turn, subproblems into new subproblems, until
an appropriate problem decomposition is identified.
When the solutions to all the subproblems of the
decomposition will eventually be available, the mantle
will compose them together to obtain the solution of the
original problem. To this purpose, the mantle uses
decomposition knowledge and composition
knowledge, including both general strategies and
specific heuristics.
The structure of the mantle is the same for all agents and
sufficiently domain independent, while the specific
knowledge it uses is different for each agent.
The shell is aimed at supporting cooperation among
agents. It directly manages communication with the near
agents and with the near area manager. In particular,
when a problem-solving request arrives, it decides

area A

 area manager

agent A2

agent A1

agent A3

A0

J0

I0

J1

J2 J3

J5

J7

I1 I2

I6 I7I5

G0
G1

G2

G3
G4

...

...

...

...

...

Figure 1: Overall architecture organization.

whether it can be dealt with by the agent, i.e. whether it
can be accepted or must be rejected. Moreover, when
the agent generates a subproblem to be forwarded to
other agents, it identifies the most appropriate near
agent - or the near area manager if no near agent applies
- to address it. To perform these tasks, the shell uses
three types of knowledge, namely:
• self knowledge, i.e. (fine-grained) knowledge about

the competence domain of the agent itself and the
types of problems it can deal with, used to decide
whether an incoming problem-solving request is
acceptable or not;

• classification knowledge, i.e. (fine-grained)
knowledge concerning the analysis and
classification of incoming problem-solving requests,
used to match them against agent competence and
capabilities;

• mutual knowledge, i.e. (fine-grained) knowledge
about the competence domain of the near agents and
the types of problems they can deal with, used to
identify the most near agent address to which a
subproblem should be forwarded.

The structure of the shell is the same for all agents and
sufficiently domain independent; in particular,
communication occurs according to an appropriate
communication protocol shared by all agents (and area
managers). The knowledge exploited by the shell is
clearly specific to each agent.

3.3 Area managers

An area manager is in charge of managing
communication among the near agents and the other
area managers; clearly, in supporting communication, it
also deeply affects cooperation. In particular, it receives
problem-solving requests from other area managers and
forwards them to near agents or receives problem-
solving requests from near agents and forwards them to
other area managers. Its main task is the correct
addressing of problem-solving requests: it receives
problem-solving requests for which a suitable agent has
not been identified by the near agents and must forward
them to the most appropriate address (a near agent or an
area manager).
To perform these tasks, the area manager uses four
types of knowledge, namely:
• self knowledge, i.e. (large-grained) knowledge about

the competence domain of the whole area and the
types of problems it can generally deal with, used to
decide whether a problem-solving request arriving
from outside the area is acceptable or not;

• agent knowledge, i.e. (fine-grained) knowledge
about what agents are available in the area, their
competence domains, and the types of problems
they can deal with, used to identify the most
appropriate near agent to which a problem-solving

request arriving from outside the area should be
forwarded;

• classification knowledge, i.e. (large-grained and
fine-grained) knowledge concerning the analysis and
classification of incoming problem-solving requests,
used to match them against area or agent
competence and capabilities;

• mutual knowledge, i.e. (large-grained) knowledge
about the competence domain of the other areas and
the types of problems they can generally deal with,
used to identify the most appropriate area manager
to which a problem-solving request arriving from
inside the area should be forwarded.

If it happens that an area manager is unable to identify
the most appropriate direct addressing for an incoming
problem-solving request, it resorts to broadcast
addressing; thus a request arriving from outside the area
is forwarded to all near agents, and a request arriving
from inside the area to all area managers.
All area managers have the same structure, sufficiently
domain independent; in particular, communication
occurs according to an appropriate communication
protocol shared by all area managers (and agents). The
knowledge exploited by an area manager is clearly
specific to each area.

3.4 Overall operation

In this section the overall operation of agents and area
managers is briefly illustrated (a detailed description is
beyond the scope of this paper).

Shell operation
Shell manages all communication between the agent and
other entities. Its operation consists of the following
functions.
• Evaluating problem-solving requests. When a

problem-solving request is received from another
agent or from the area manager the shell, using
classification knowledge and self knowledge,
evaluates if the problem belongs to the competence
area of the agent or not. If this is the case the
problem is accepted and sent to the mantle,
otherwise a rejection message is sent to the agent
which originated the problem-solving request.

• Addressing problem-solving requests. When a
problem-solving request is received from the mantle
as a result of decomposition activity, the shell, using
classification, mutual, and self knowledge, tries to
identify the most appropriate agent for the solution
of the problem. If such an agent is identified, the
problem-solving request is sent to it, otherwise it
addresses the request to the near area manager.

• Exchanging solutions and failure messages.
Solutions or failure messages coming from other
agents are forwarded to the mantle. Solutions or
failure messages produced by the kernel or by the

mantle are forwarded to the agent which originated
the related problem-solving request.

Mantle operation
Mantle operation consists of the three functions
described in the following.
• Evaluating incoming problems. The mantle, using

condition knowledge, verifies if the preconditions
necessary for solving a problem are satisfied (if this
is not the case a rejection message is sent to the
agent which originated the problem-solving
request).

• Decomposing incoming problems into subproblems.
The mantle, using decomposition knowledge, tries to
decompose the problem into subproblems. If the
operation is successful, then for each subproblem a
problem-solving request is sent to the shell,
otherwise direct solution is attempted and the
problem is sent to the kernel.

• Composing together incoming subproblem
solutions. When a solution is received from the
shell, the mantle identifies the decomposition which
the solved problem belongs to and verifies if all the
other subproblems are solved. If this is the case, it
composes together, using composition knowledge,
the solutions of the subproblems and sends the
solution of the original problem to the shell. If some
subproblems are still unsolved the mantle waits for
receiving the related solutions.

Kernel operation
The kernel receives problem-solving requests from the
mantle and attempts their solution by using problem
knowledge. A solution or a failure message is sent to the
shell at the end of the problem-solving activity.

Area manager operation
Area manager operation basically consists of two
functions.
• Addressing problem-solving requests. The area

manager is mainly in charge of assisting near agents
in addressing problem-solving requests. When a
problem-solving request is received from a near
agent, the area manager, using classification, mutual,
and self knowledge, identifies the most appropriate
area for the solution of the problem, and then sends
the problem-solving request to its area manager.

• Evaluating incoming problem-solving requests.
When a problem-solving request is received from
another area manager, the area manager, using
classification knowledge and self knowledge,
evaluates whether the problem belongs to the global
competence of the area or not. If this is not the case,
a rejection message is sent to the area manager from
which the request was originated. Otherwise, the
area manager, using classification knowledge and
agent knowledge, identifies the most appropriate
near agent for the solution of the problem.

4. AN APPLICATION TO AMR CONTROL:
THE HOMING PROBLEM

4.1 The problem faced

As an application of the distributed architecture
proposed in the previous section, we consider a specific
case of AMR control, namely the problem of navigation.
In particular, we focus on the homing problem, i.e. the
process by which an AMR moves towards a particular
location on the basis of information obtained from a set
of on-board sensors [2]. We assume that the AMR
moves in a indoor environment. The particular
environment topology is unknown to the robot, i.e. no
environment map is available. The navigation is carried
out by exploiting information obtained both from robot
sensors and from common-sense knowledge about
possible environment features provided to the AMR
(again, not environment maps).

4.2 Experimental activity

The distributed architecture described in section 3 has
been implemented, in very general terms, into a software
system called AGENTS, written in C++ and running on a
SUN Sparcstation 10 under Solaris 2.3. AGENTS exploits
in a simple and effective way the possibility offered by
the hardware/software environment to simulate on a bi-
processor system a fully parallel execution of the
activities of the various agents and area managers
composing the architecture. Each agent is realized
through three autonomous processes which implement
the operation of the shell, of the mantle and of the
kernel, respectively. AGENTS offers to the application
designer a complete development environment for
defining, implementing, and running a specific
distributed architecture tuned to the problem domain at
hand. Using AGENTS, a specific system has then been
developed, called HOM-1, dedicated to face the homing
problem. HOM-1 architecture encompasses 11 areas (58
agents, whose detailed description is beyond the limits
of this paper), whose competences are shortly described
below:
• Area A: sensors management

controlling robot sensors and preprocessing the
acquired data

• Area B: mobile sensors positioning
positioning robot mobile sensors

• Area C: sensors selection
selecting the most appropriate sensors to measure a
given quantity

• Area D: movement strategy selection
identifying the most appropriate strategy to perform
a particular movement in the environment

• Area E: movement implementation
implementing a particular movement strategy

• Area F: actuators management
controlling robot actuators

• Area G: object recognition
recognizing a known object on the basis of
available sensory information

• Area H: object characterization
identifying particular object characteristics,
including size, position, state, etc.

• Area I: environmental reasoning
reasoning about the environment, including
objects, properties, constraints, etc.

• Area J: environment exploration
management of strategies for environment
exploration

• Area K: user interaction
managing user dialog and identifying user needs

HOM-1 has been largely experimented with a test-case
concerning an AMR capable of moving in an office
space and of achieving assigned goals (HOM-1-
OFFICE). The experimental activity carried out has
allowed to prove the correctness of the proposed
approach, to show its technical appropriateness, and to
demonstrate its potentials for larger AMR control
applications.

In the following section, we illustrate a simple working
session with HOM-1-OFFICE.

4.3 A sample session

Let us suppose that an AMR, placed in a office, must
achieve the goal of leaving the office. This goal may
have been originated from a user command or may
derive from the decomposition of a more complex task,
for example, one of the agents of the area J may select an
environment exploration strategy which involves
leaving the office.

In any case, the goal of leaving the office represents a
problem to solve for the agent in charge of it. If this
problem does not belong to the competence area of the
agent in charge of it, a search activity is started in order
to identify another agent capable of solving it. The
result of this search returns agent I6, specialized in the
office environment, as the most suitable agent for the
current problem (agent names are composed by a capital
letter, corresponding to the area the agent belongs to,
and by an identification number; X0 is conventionally
the area manager of area X). Therefore, the goal "leaving
the office" (say P.1) is allocated to agent I6.

Agent I6, using decomposition knowledge, decomposes
the original problem P.1: "leaving the office" into three
subproblems, namely: P.1.1: "finding the door", P.1.2:
"measuring the door", and P.1.3: "going beyond door".
Since these subproblems are beyond the competences
of agent I6, the most suitable agents for their solution
are looked for. Since agent I6 is unable to identify any
suitable near agent for P.1.1, P.1.2 and P.1.3, the area

manager of area I, namely I0, is charged of these
problems.

For the sake of brevity, let us focus on the solution of
subproblem P.1.1: "finding the door" (the other
subproblems are solved in a similar way). The area
manager I0 allocates P.1.1 to agent J1 (we omit, for the
sake of brevity, the details of problem allocation, which
involves the interaction between different area
managers). The agent J1 belongs to the J area and is
capable of coordinating other agents, belonging to
different competence areas, to explore the office
environment, looking for known objects. In this case,
the object to look for is the door. Agent J1 decomposes
problem P.1.1: "finding the door" into three
subproblems: P.1.1.1: "image acquisition", P.1.1.2:
"sonar map acquisition", and P.1.1.3: "door
recognition". Later, these subproblems are allocated by
the area manager J0 as follows:
• subproblem P.1.1.1: "image acquisition" to agent

A1, capable of managing the camera;
• subproblem P.1.1.2: "sonar map acquisition" to

agent A3, capable of managing the sonar sensor;
• subproblem P.1.1.3: "door recognition" to agent G1

which is capable of carrying out the door
recognition task.

Moreover, since J1 knows that the solutions of
subproblems P.1.1.1 and P.1.1.2 are relevant to the
solution of subproblem P.1.1.3, it includes in the
problem-solving requests P.1.1.1 and P.1.1.2, addressed
to the area manager J0, the requirement of forwarding
results to the agent to which P.1.1.3 is allocated.
The subproblems allocated to agents A1 and A3 (i.e.,
data acquisition from the camera and the sonar sensors),
are not further decomposed and can be faced in parallel.
They are solved by the relevant agents and the results
of their activity are forwarded to agent G1.

Agent G1 belongs to the G area in charge of object
recognition; in particular, it is specialized in recognizing
doors. Agent G1 exploits the data acquired from camera
and sonar sensors, in order to check whether the
particular object it has knowledge about, i.e. the door,
can be recognized in the portion of the environment in
front of the robot. G1 synthesizes a solution (or a failure
message) for the subproblem P.1.1.3: "door recognition"
and sends it back, through area managers G0 and J0, to
agent J1.

Agent J1 then examines the result produced by G1:
• If the door was recognized, agent J1 considers the

subproblem P.1.1: "finding door" solved and can use
this result for the accomplishment of the subsequent
activity (i.e., P.1.2: "measuring the door").

• Otherwise, if no door was identified, the problem
solving-activity is continued. In this case, agent J1
selects an appropriate strategy for exploring the

environment. For example, it may adopt the strategy
of identifying all recognizable objects in the portion
of the environment in front of the robot and, then,
trying to exploit the information about the
recognized objects, in order to push the exploration
further.

In the latter case, J1 generates the subproblem P.1.1.4:
"recognizing objects" which is sent by the area manager
J0 to all agents belonging to G area, except G1. Each of
them will try to recognize the objects pertaining to its
competence domain, using data previously acquired
from the camera and the sonar sensor, and then will
send a solution or failure message back to J1, through
area managers G0 and J0.

If no object has been recognized, agent J1 may formulate
a new strategy, which involves interacting with agents
of the B area in order to change the acquisition direction
of the sensors and to explore another portion of the
environment.
Otherwise, if some objects have been identified, agent J1
will then decide how to continue the exploration of the
environment on the basis of the results obtained. For
instance, if a window has been recognized, J1 may
exploit the information about the presence of a window
in a known direction in order to elaborate a more
effective strategy for solving subproblem P.1.1: "finding
the door". It generates the new subproblem P.1.1.5:
"finding usual spatial relations between window and
door" which is assigned by the area manager J0 to agent
I1. Using common-sense knowledge, agent I1 infers that
usually, in a room and hence in an office, door (the
object to find) and window (the object found) are not
located on the same wall. Therefore, if the robot moves
leaving the window on the back, the search for the door
might be favored. Therefore, after I1 has returned the
solution of P.1.1.5: "finding usual spatial relations
between window and door", agent J1 generates the
subproblem P.1.1.6: "turning back to window", which is
assigned to agent E3. This, using its own knowledge
and possibly resorting to the cooperation of other
agents if appropriate, carries out the subproblem P.1.1.6
and moves the robot to a new position. When this more
favorable position has been reached, J1 continues the
search for the door by generating three new
subproblems, namely:
• P.1.1.7: "image acquisition" (a new instance of

subproblem P.1.1.1) which is allocated to agent A1;
• P.1.1.8: "sonar map acquisition" (a new instance of

subproblem P.1.1.2) which is allocated to agent A3;
• P.1.1.9: "door recognition" (a new instance of

subproblem P.1.1.3) which is allocated to agent G1.

Data are then acquired from the new viewpoint, and the
problem solving activity goes on in a way similar to that
already described above. In this case, the door is

recognized in the environment in front of robot and the
problem P.1.1 "finding the door" is eventually solved.

4.4 Discussion

HOM-1-OFFICE is just a simple application example of
the proposed architecture to the AMR control problem.
A detailed comparison with related works is beyond the
scope of this paper. We only propose here some
preliminary remarks, focusing on two recent papers
related to this topic, namely [8] and [18].

In [8] an architecture for navigation composed by three
asynchronous heterogeneous components, namely a
controller, a sequencer, and a deliberator, is proposed.
This approach can be considered a first step towards
the complete distribution of computation and control
realized in our architecture.
The main requirements for robot control architectures
identified in [8] as a conclusion of the application
experience developed with the proposed approach
include:
• robot control architectures should be

heterogeneous: using different computational
mechanisms to perform different tasks is
straightforward and it works;

• robot control architectures should be
asynchronous: slow computations should be
performed in parallel with fast ones;

• robot control systems should be designed bottom-
up.

Our architecture goes far beyond the early proposal of
[8] and is powerful enough to completely fulfil the
requirements stated above. In fact:
• each agent can feature a specific reasoning

mechanism, tailored to its own problem-solving
tasks;

• the computation processes associated to different
agents are autonomous and can be carried out in
parallel, if sufficient resources are available;

• system design and implementation can focus on
individual agents separately and can be carried out
incrementally (we will come back to this subject in
section 5).

In [18] an architecture is proposed which corresponds to
a hierarchical decomposition of the navigation problem
in four levels. A high-level reasoning system is in
charge of managing the overall robot operation and of
defining high-level symbolic task to be carried out (e.g.
"fetch a stick"). A global navigator accepts symbolic
tasks from the high-level reasoning system and,
exploiting topological knowledge, produces a sequence
of more specific local tasks (e.g. "move to the bridge",
"cross the bridge", "approach the stick", etc.). The
global navigator interacts, in turn, with a local navigator
which has competence about sensorimotor coordination

and is in charge of transforming local tasks into the
appropriate sensorimotor activity. Finally, a robot
controller, directed by the local navigator, manages
robot sensors and actuators.
As it is quite evident, this proposal can be considered
as a particular case of our approach, where agents
having different competences interact through problem
decomposition and allocation.
Slack [18] remarks that "past navigation research has
largely ignored the use of situated knowledge to get a
better grasp of the navigation problem". In our proposal,
every different kind of knowledge related to the
navigation problem is naturally framed in the relevant
area, partitioned among agents, and exploited by them
through suitable reasoning mechanisms. Moreover,
while the architecture proposed in [18] enforces a
particular hierarchical decomposition of the navigation
problem, our approach does not impose any a priori
decomposition scheme and allows agents to
dynamically generate the most suitable decomposition
for the problem at hand.

5. CONCLUSIONS

The paper has presented a novel architecture for the
AMR control problem. The proposed architecture
features a truly distributed organization which can
ensure several practical advantages. It has been
experimented in a case study concerning the homing
problem.

Among the main technical contributions of the
proposed approach, we mention:
• the capability to deal with multiple goals and multiple

perspectives, crucial for obtaining an intelligent
robot behavior;

• the possibility to manage a variety of heterogeneous
knowledge sources, necessary to face real-size
applications;

• the definition of a rational, disciplined, and general
framework for embedding complex robot control
knowledge.

Moreover, the proposed paradigm offers several
advantages also from the methodological point of view.
These concern some of the most critical tasks of the life
cycle of a knowledge-based robot control system. In
particular [10]:
• The process of knowledge analysis and modeling

can be structured in a natural and effective way.
Namely: (1) competence areas are identified first, (2)
knowledge analysis sessions can then consider each
area separately, exploring the global competences
associated to the area, (3) finally, agents for each
area are identified and analyzed through more
focused working sessions.

• In the technical design phase, knowledge
representation techniques and reasoning
mechanisms can be tailored for each agent, which are
allowed to be heterogeneous. This way, different
techniques and methods can be applied for the
design of different system components, thus
ensuring better conceptual coupling, higher
transparency, effectiveness, and efficiency.

• During system development, each agent can be built,
tested, and validated independently from the others,
thus favouring incrementalism and flexibility.

• Knowledge acquisition can be organized in a
disciplined, modular, and structured way, thus
enhancing quality and, at the same time, improving
productivity and reducing costs. The area/agent
paradigm, even if simple enough, can be a powerful
tool in the hands of an experienced knowledge
engineer: it can concretely contribute to reduce the
effort required to deal with large and complex
domains.

• During the operational life of the system,
maintenance and extension tasks are made easier. In
particular, new agents can be developed without
modifying neither system architecture nor the other
agents. In fact the addition of a new agent only
requires updating the self and agent knowledge of
the near area manager and the mutual knowledge of
the near agents. Also the development of a new area
poses little problems; only the mutual knowledge of
the others area managers has to be updated. In this
way, the extension of robot sensorial capabilities, the
consideration of larger and more complex
environments, and the addition of new robot tasks
can be achieved in a modular and natural way.

Finally, let us mention that the proposed architecture
offers specific features (for example, the explicit use of
self and mutual knowledge) for implementing learning
capabilities. This will be the main issue of a future
research.

Acknowledgments

This work has been partially supported by the Consiglio
Nazionale delle Ricerche, Progetto Finalizzato Robotica,
Obiettivo PANDE.
We are indebted to Prof. Riccardo Cassinis for the
support offered in the development of the test-case
discussed in section 4.

6. REFERENCES

[1] R.C. Arkin. Integrating behavioral, perceptual and
word knowledge in reactive navigation, Robotics and
Autonomous Systems 6, 1990, 105-122.

[2] R. Basri and E. Rivlin. Homing using combinations of
model views. Proc. 13th International Joint Conference
on Artificial Intelligence, Chambery, F, 1993, 1586-1591.
[3] R.A. Brooks. Solving the find path problem by a
good representation of free space. Proc. 2nd American
National Conference on Artificial Intelligence,
Pittsburgh, PA, 1982, 381-386.
[4] R.A. Brooks. A layered intelligent control system for
a mobile robot. Proc. ISSR, 3rd International
Symposium of Robotics Research, Govieux, F, 1985, 365-
372.
[5] R.A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal on Robotics and
Automation, RA-2(1), March 1986.
[6] B. Chandrasekaran. Natural and social system
metaphors for distributed problem solving. IEEE Trans.
on Systems, Man, and Cybernetics SMC-11(1), 1981, 1-5.
[7] R. Engelmore and T. Morgan. Blackboard Systems.
Addison-Wesley, Wokingham, UK, 1988.
[8] E. Gat. Integrating planning and reacting in a
heterogeneous asynchronous architecture for
controlling real-world mobile robots. Proc. 10th
American National Conference on Artificial
Intelligence, San Jose, CA, 1992, 809-815.
[9] M.R. Genesereth, M.L. Ginsberg, and J.S.
Rosenschein. Cooperation without communication.
Proc. 5th American National Conference on Artificial
Intelligence, Philadelphia, PA, 1986, 51-57.
[10] G. Guida and C. Tasso, Design and Development of
Knowledge-Based System, From Life Cycle to
Methodlogy, John Wiley & Sons, Chichester, UK, 1994.
[11] S.Y. Harmon, G.L. Bianchini, and B.E. Pinz. Sensor
data fusion through a distributed blackboard, Proc.
IEEE Conference on Robotics and Automation, San
Francisco, CA, 1986, 1449-1454.

[12] S.Y. Harmon. The ground surveillance robot (GSR):
An autonomous vehicle designed to transit unknown
terrain, IEEE Journal of Robotics and Automation RA-
3(3), 1987.
[13] M. Mataric. A distributed model for mobile robot
environment learning and navigation. Technical Report
1228, MIT AI Laboratory, Cambridge, MA, 1990.
[14] D.W. Payton. An architecture for reflexive
autonomous vehicle control. Proc. IEEE Conf. on
Robotics and Automation, San Francisco, CA, 1986,
1838-1845.
[15] J.S. Rosenschein and M.R. Genesereth. Deals
among rationals agents . Proc. 9th International Joint
Conference on Artificial Intelligence, Los Angeles, CA,
1985, 91-99.
[16] R. Simmons. An architecture for coordinating
planning, sensing and action. Proc. DARPA Workshop
on Innovative Approaches to Planning, Scheduling
and Control, 1990.
[17] M.G. Slack. Planning paths through a spatial
hierarchy: Eliminating stair-stepping effects. Proc. SPIE
Conference on Sensor Fusion, 1988
[18] M.G. Slack. Navigation templates: mediating
qualitative guidance and quantitative control in mobile
robots. IEEE Trans. on Systems, Man, and Cybernetics
SMC-23(2), 1993, 452-466.
[19] R.G. Smith and R. Davis. Frameworks for
cooperation in distributed problem solving. IEEE Trans.
on Systems, Man, and Cybernetics SMC-11(1), 1981, 61-
70.
[20] C.E. Thorpe. Path relaxation: Path planning for a
mobile robot. Proc. 4th American National Conference
on Artificial Intelligence, Austin, TX, 1984, 318-321.

