


Linux High Availability
In general, there are service monitor daemons running on the load 
balancer to check server health periodically, as illustrated in the 
figure of LVS high availability. If there is no response for service 
access request or ICMP ECHO_REQUEST from a server in a 
specified time, the service monitor will consider the server is dead 
and remove it from the available server list at the load balancer, thus 
no new requests will be sent to this dead server. When the service 
monitor detects the dead server has recovered to work, the service 
monitor will add the server back to the available server list. 
Therefore, the load balancer can automatically mask the failure of 
service daemons or servers. Furthermore, administrators can also use 
system tools to add new servers to increase the system throughput or 
remove servers for system maintenance, without bringing down the
whole system service.



Linux High Availability
Now the load balancer might become a single failure point of the
whole system. In order to prevent the whole system from being out of 
service because of the load balancer failure, we need setup a backup 
(or several backups) of the load balancer. Two heartbeat daemons run 
on the primary and the backup respectively, they heartbeat the 
message like "I'm alive" each other through serial lines and/or 
network interfaces periodically. When the heartbeat daemon of the 
backup cannot hear the heartbeat message from the primary in the
specified time, it will take over the virtual IP address to provide the 
load-balancing service. When the failed load balancer comes back to 
work, there are two solutions, one is that it becomes the backup load 
balancer automatically, the other is the active load balancer releases 
the VIP address, and the recover one takes over the VIP address and 
becomes the primary load balancer again.



Linux High Availability

The primary load balancer has state of connections, i.e. which server 
the connection is forwarded to. If the backup load balancer takes over 
without those connections information, the clients have to send their 
requests again to access service. In order to make load balancer
failover transparent to client applications, we implement connection 
synchronization in IPVS, the primary IPVS load balancer 
synchronizes connection information to the backup load balancers
through UDP multicast. When the backup load balancer takes over 
after the primary one fails, the backup load balancer will have the 
state of most connections, so that almost all connections can continue 
to access the service through the backup load balancer.



Open Mosix
OpenMosix adds clustering abilities to the Linux* kernel that allow 
any standard Linux process to take advantage of a cluster's resources. 
By using adaptive load-balancing techniques, processes running on 
one node in the cluster can transparently "migrate" to another node 
where they can execute faster. Because openMosix is completely 
transparent to all running programs, the process that has been 
migrated doesn't even know (or need to know) that it's running on a 
remote system. As far as that remote process and other processes
running on the original node (called the "home node") are concerned, 
the process is running locally.
This transparency of openMosix means that no special programming
is required to take advantage of openMosix's load-balancing 
technology. In fact, a default openMosix installation will migrate 
processes to the "best" node automatically.



Open Mosix
OpenMosix, like an SMP system, cannot execute a single process on 
multiple physical CPUs at the same time. This means that openMosix 
won't be able to speed up a single process such as Mozilla, except to 
migrate it to a node where it can execute most efficiently. In addition, 
openMosix doesn't currently offer support for allowing multiple 
cooperating threads to be separated from one another.

Immagine
processo

(user level + 
syscall remotizzabili)

Nodo home (natio) Nodo adottivo

Processo
“deputy”

System call
non remotizzabili

Migrazione



Windows 2003
Microsoft Windows® Server 2003 Enterprise Edition now supports 8-node 
clusters (was two), and Windows Server 2003 Datacenter Edition now 
supports 8-node clusters (was four).

Windows Server 2003 provides no mechanism to mirror or replicate user 
data across the nodes of an MNS cluster, so while it is possible to build 
clusters with no shared disks at all, it is an application specific issue to 
make the application data highly available and redundant across machines.

Better Failover – in Windows 2000, if Node A owned the quorum disk and 
lost all network interfaces (i.e. public and heartbeat), it would retain control 
of the cluster, despite the fact that no one could communicate with it, and 
that another node may have had a working public interface. Windows 
Server 2003 cluster nodes now take the state of their public interfaces into 
account prior to arbitrating for control of the cluster.


